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ABSTRACT

Hardware-based tracing, being efficient, can be a good alternative to
the computationally-expensive software-based instrumentation in
binary-only greybox fuzzing. However, it only records all branches
within a specified address range, lacking the flexibility to re-filter
them. To overcome these limitations, this paper introduces Tatoo, a
hardware platform that employs tagged architectures and hardware
tracing to enable users to perform instruction-level tagging, which
can significantly reduce the volume of traced data and improve
fuzzing efficiency. Tatoo also supports recording the dataflow in-
formation for smart mutations. Implemented on a real hardware
FPGA platform, Tatoo demonstrates a mere 8.7% performance
overhead.
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1 INTRODUCTION

Fuzzing is one of the well-known techniques to effectively and au-
tomatically find bugs. As an essential variant of fuzzing, Coverage-
Guided Fuzzing (CGF [7]) has been widely used in industry and
research. The keys to CGF are monitoring each program execution
and obtaining coverage information and dataflow information. In
many cases, programs are binary-only, as developers are unlikely
to release their source code. For such scenarios, code coverage
is collected through dynamic binary translation [3], static binary
rewriting [16, 18], and hardware tracing [5, 19, 23]. Hardware trac-
ing can provide transparent support for fuzzing because coverage
information can be collected directly at the hardware layer. Com-
pared to dynamic binary translation, hardware tracing introduces
small overheads [23]. Besides, static binary rewriting is highly lim-
ited [25]. Hardware tracing is practical compared to static binary
rewriting because it does not require prerequisites of target binaries.

Existing hardware tracing tools such as Intel Processor Trace
(PT) [27] and ARM CoreSight [1] suffer from inflexibility. While
they are capable of tracing instructions within a configured ad-
dress range, they lack the ability to filter and differentiate these
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instructions based on their importance within that range. This
limitation becomes evident during hardware fuzzing, where it is
often necessary to trace all data within the code segments of the
binaries. Consequently, existing hardware tracing tools generate
an excessive amount of data, leading to several problems:

They trace a plethora of irrelevant data.Dealing with a mas-
sive amount of data incurs significant overhead. Current fuzzing
processes typically involve static optimizations that do not require
tracing every basic block, such as single successor and dominator-
based instrumentation pruning [15, 18]. If hardware tracing sup-
ports instruction-level filtering, we can selectively trace basic blocks
through static analysis instead of tracing all blocks in the code. This
will reduce the number of instrumented instructions, improving
fuzzing efficiency.

They encounter difficulties in tracing dataflow. Simultane-
ously tracing control flow and dataflow results in a high volume of
data that can overwhelm the trace buffer, making it challenging to
trace dataflow effectively. Existing works confirm that techniques
such as taint analysis [10], symbolic execution [13], and taint infer-
ence [2, 17] can effectively assist fuzzers in achieving more accurate
mutation. Therefore, an ideal hardware-assisted fuzzing approach
should aim to minimize traced data and flexibly trace essential
dataflow for fuzzing.

In this paper, we present Tatoo, a custom hardware platform
with dataflow tracing to enhance CGF on the RISC-V architecture.
We leverage instruction tagging to provide flexible hardware tracing
for fuzzing, which allows us to effectively utilize static analysis to
reduce the number of instrumented instructions. Tatoo has the
following features:

Flexibility. Tatoo supports users to add tags to specified in-
structions at the instruction-level based on program semantics.
According to the different tags of instructions, Tatoo can perform
specific processing operations, such as excluding some low-priority
instructions from tracing or tracing the dataflow generated by some
specific library functions.

Dataflow Tracing. During program execution, Tatoo collects
the execution data and captures branch-related dataflow informa-
tion, which is then committed to the coprocessor. The coprocessor
processes the dataflow information, allowing the fuzzer to use taint
inference techniques to assist in mutating the input data. This tech-
nique enables Tatoo to address challenges such as implicit flow
and magic bytes within the fuzzing process.

By leveraging these capabilities, Tatoo enhances the effective-
ness and efficiency of CGF by providing flexible instruction-level
tracing and enabling the utilization of dataflow information for
more targeted and effective mutation strategies. We implement
our prototype based on lowRISC [22] and PHMon [12] and uti-
lize a real hardware FPGA platform to evaluate the overhead of
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Tatoo. The performance overhead of Tatoo is 8.7% in tested real-
world programs, and its area overhead is 33.8%. Compared to AFL, a
state-of-the-art CGF, Tatoo has achieved a 29.03% improvement in
throughput and an 8.2% improvement in coverage. We open-source
the code of Tatoo on github.com/Compass-All/TATOO.
2 PRELIMINARY

Hardware Tracing. Intel PT and ARM CoreSight serve as tools
for capturing debugging information during processor operations.
To optimize trace data volume, both Intel PT and ARM CoreSight
employ a highly compressed encoding format for original pro-
gram execution data, subsequently storing these encoded packets
in memory. Furthermore, Intel PT and ARM CoreSight provide the
capability to discern whether a specific address range should be
traced or not through the configuration of address range compara-
tors. Despite these features, both Intel PT and ARM CoreSight are
susceptible to overflow issues. Intel PT addresses this challenge by
incorporating the Table of Physical Addresses mechanism, enabling
the redirection of trace output data to alternative locations in the
event of overflow. Additionally, users can mitigate the probabil-
ity of overflow by lowering the frequency of the main CPU and
employing sampling techniques [26].

Programmable Hardware Monitor (PHMon) is an open-source
hardware tracing tool on RISC-V. Our work is built upon PHMon.
PHMon [12] can monitor user-defined events and perform the cor-
responding action. The hardware design of PHMon consists of three
units: Trace Unit (TU), Match Unit (MU), and Action Unit (AU). TU
collects the execution data from the processor during the CPUwrite-
back stage. MU checks the data sent by TU, finds the data matching
the event, and writes it to the queue. Each MU pairs with the CFU
in AU, where the CFU stores the action sequence once the MU
matches successfully. AU takes follow-up actions according to the
programmer’s configuration. The actions include ALU operation,
memory access operation, and interrupt. By employing PHMon,
users are able to perform the fuzzing process by customizing the
hardware monitoring and action execution.

Common Fuzzing Roadblocks. Two common fuzzing road-
blocks are magic bytes and checksums, as shown in Listing 1. Re-
searchers circumvent these roadblocks by obtaining dataflow infor-
mation in programs [2]. For solving the magic bytes, GreyOne [17]
employs taint inference to mutate the input at the byte level and
monitor the program variables. Once the value of a variable has
changed, GreyOne can conclude that it depends on the specific byte
of the mutated input and identify all variables that use a direct copy
of the input bytes. GreyOne records the values of variables used in
branch constraints by instrumentation.

One approach to solving the nest checksum is to remove the
hard checks and fix them later [2]. It ignores the hard checks so
that the fuzzed program can reach deeper branches. Then, it fixes
it and verifies whether the path is reachable.

3 TATOO DESIGN

3.1 Architecture and Workflow

As Figure 1(a) shows, we utilize a coprocessor as the trace com-
ponent and implement instruction tagging in the main core. In-
struction tagging allows users to control data collection and assign
distinct actions in trace components. When users execute the pro-
gram, the tags and the values in source registers are committed

1 /* magic bytes example */
2 if(u64(input) == u64("MAGICHDR")){bug(1);}
3 /* nested checksum example */
4 if(u64(input) == sum(input+8,len -8)){
5 if(u64(input +8) == sum(input+16,len -16)){
6 if(input [16]== 'R' && input [17]== 'Q'){bug(2) ;}}}
7 /* implicit flow example */
8 if(input [16] == 'R' ) {var1 =0;}
9 if(var1 == 0){bug(3);}

Listing 1: Roadblocks of Fuzzing

to the trace component. The trace component assists the fuzzer in
collecting coverage and dataflow information. The detailed modifi-
cation of hardware is illustrated in Section §4.3.

The workflow of Tatoo consists of two stages: preparation and
fuzzing. The specific workflow shown in Figure 1(b) is as follows:

Preparation Stage:①Users perform static analysis on a target
program (e.g., real-world program, dynamic link library), find the
instructions to tag, and write them to a tag file. ② Users use
Tagger to create a tagged program with instruction tagging. ③

Users configure the programmable coprocessor by Configurer.
Users use tags and instruction types to distinguish different events,
and the coprocessor performs different actions based on the spe-
cific events. (1)Tag=0: The coprocessor filters instructions, so the
instructions do not enter the queue. (2)Tag=1 and the jump in-
struction: The coprocessor updates the bitmap and writes it to the
memory. Tatoo adopts PHMon’s edge encoding algorithm to gener-
ate pseudo-random IDs for each edge. (3)Tag=1 and the conditional
jump instruction: The coprocessor updates the bitmap and records
the dataflow information based on taint inference. The method of
updating data flow is similar to updating the bitmap. (4)Tag=2 and
Tag=3: The tag values are retained for future use.

Fuzzing Stage:④ The kernel reserves continuous physical mem-
ory for traced data by Device Driver when the fuzzer process
starts. ⑤ The fuzzer executes the tagged program to be fuzzed. The
Monitor determines the program that the kernel should monitor.
The coprocessor needs to be enabled or disabled during kernel
context switches. ⑥ When a monitored program executes, the pro-
cessor commits the execution data, including the tag and dataflow
information, to the coprocessor. ⑦ The coprocessor collects rele-
vant information and writes it into memory. ⑧ The fuzzer analyzes
the data and schedules and mutates the input files according to
the collected dataflow. ⑨ When the fuzzer process exits, the kernel
frees the memory.
3.2 Trace Component

We employ a coprocessor as a trace component and extend its
capabilities to gather branch-related information, enabling us to
collect information through taint inference. In this subsection, we
delve into the design considerations of the trace component.

There are two design alternatives to collect the traced data in
the hardware: in-core [14] and off-core design [6]. If the in-core
design is adopted, the hardware manufacturer must redesign all
the CPUs to collect trace data, which is impractical. Therefore, we
adopt an off-core design using a coprocessor.

Traditional software dataflow-assisted fuzzing is usually imple-
mented using dynamic taint analysis or taint inference. Although
dynamic taint analysis [10] can be applied in many scenarios, such
as malware detection and information flow leakage, for the appli-
cation scenario of fuzzing, the implementation of dynamic taint
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Figure 1: The Architecture and Workflow of Tatoo

analysis on hardware is deficient in three points compared to taint
inference.

Taint inference can tackle implicit flow issues. Existing
hardware-assisted dynamic taint analysis [6] struggles with implicit
flows due to neglecting tainted data’s impact on other data. Despite
the dedicated efforts of Jangseop Shin et al. [11] to design new
hardware solutions for this issue, their approach still encounters
challenges, leading to the presence of false positives and negatives.
In contrast, taint inference [17] demonstrates minimal undertaint
and only a slight amount of overtaint, establishing itself as a more
effective choice due to its provision of more accurate data.

Taint inference offers superior efficiency. Dynamic taint
analysis introduces high overhead, as the coprocessor must han-
dle numerous instructions for taint propagation, leading to fre-
quent shadow memory loading and storing, thus hampering per-
formance [6]. In contrast, taint inference only processes branch
instructions, making it more efficient.

Taint inference demandsminimalmanual effort.Dynamic
taint analysis involves a plethora of instructions, such as vector,
atomic, and customized instructions in RISC-V, making manual
summarization tedious. Moreover, propagation rules are diverse,
making manual rule summarization impractical for context-based
rule specification [24]. Taint inference, on the other hand, simply
records source register values for branch instructions, avoiding the
need for extensive manual configuration.
3.3 Instruction Tagging

Tatoo differentiates and filters the instructions by tagging them.
Differentiation. Different tags necessitate distinct treatments.

For Tag = 1, we employ GreyOne’s approach to collect dataflow.
While GreyOne effectively addresses the magic bytes issue shown
in Listing 1, it struggles when using functions like memcmp to collect
magic bytes information. Specifically, GreyOne, similar to AFL, the
data updated later overwrites the previous data in loop comparison,
leading to data loss. To mitigate this, we assign varied tags for
different dataflow types, enabling Tatoo to process each uniquely.
This approach also allows for sequential recording of current magic
bytes information. In addition, REDQUEEN [2] addresses checksum
challenges by initially removing hard checks and fixing them later.
Theoretically, tagging certain instructions to trigger a processor

exception when not jumping to the desired location could further
aid in resolving checksum issues.

Filter. Existing works [4, 18] show that graph reducibility tech-
niques can elide instrument some basic blocks in fuzzing. This
is because many basic blocks do not affect code coverage during
fuzzing, such as some loops and library functions. However, previ-
ous hardware-based binary-only fuzzing usually instruments the
branch instructions in the text segments. Such coarse-grained in-
strumentation leads to low performance and increases the probabil-
ity of edge collisions. To solve this problem, we tag the instructions
so that the coprocessor distinguishes how to process them with
the tagging instructions. Although instruction tagging introduces
a small amount of overhead, it reduces the number of instrumenta-
tion from instrumentation pruning and thus optimizes performance.
Notice that the instruction tagging overhead only exists when run-
ning the monitored program. When running other programs, we
can disable memory tagging by setting the Control State Register
(CSR) registers. In this way, Tatoo takes advantage of static analy-
sis to optimize the number of instrumentation with high efficiency,
which has the following benefits.

Tatoo effectively mitigates the probability of buffer overflow.
Off-core devices (e.g., Intel PT, ARM CoreSight) require an on-chip
buffer to temporarily store the data executed by the hardware.
However, if the traced data is generated too fast or consumed too
slowly, the buffer overflows, resulting in the loss of traced data.
The overflow adversely impacts the accuracy of coverage collection.
Due to Tatoo’s reduction of traced data, it effectively alleviates the
buffer overflow probability.

Tatoo can effectively impede the anti-fuzzing technique [9]. Ex-
isting anti-fuzzing confuses existing coverage feedbackmechanisms
by inserting fake code, introducing a lot of conditional branches and
indirect jumps into the original program. Thus, it creates a mean-
ingless path explosion and wastes most fuzzing time on invalid
inputs. Tatoo can easily filter the invalid input if static analysis
analyzes the meaningless basic blocks. Besides, anti-fuzzing also
converts explicit dataflow to implicit dataflow, preventing dataflow
tracing through taint analysis. Nevertheless, we collect dataflow by
taint inference.
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4 IMPLEMENTATION

We implement our prototype based on lowRISC [22] and PHMon.
lowRISC implements memory tagging. PHMon is a programmable
hardware monitor used to build prototype systems rapidly. They
are both open-source and flexible. We synthesize and map our
prototype to the Xilinx Kintex-7 FPGA KC705 evaluation board
using Xilinx Vivado 2015.4. We present the necessary modifications
to the user-level program, kernel, and hardware to support Tatoo.
These modifications are essential for nearly all hardware-based
binary fuzzing approaches.

4.1 User-level Program Modification

Static Analysis.We utilize the commercial software IDApro for
offline static analysis, scripted in Python using IDAPython. The
main objective of the static analysis is to identify functions that are
not instrumented by AFL, enabling Tatoo to filter out these func-
tions during tracing. The analysis procedure involves the following
steps: First, we prepare two binaries: one is instrumented using AFL
and the other is compiled normally without instrumentation. We
collect line numbers for each function in both binaries and compare
them, revealing functions with AFL instrumentation. Subsequently,
we record branch and jump instructions in functions initially in-
strumented by AFL in the second binary. After static analysis, the
instructions that require tagging are obtained and stored to a file.

Note that our static analysis is a prototype module. Our inten-
tion is to explore whether instruction tagging could assist hardware
tracing tools in achieving more flexible tracing capabilities. The
choice of specific tags depends on user-driven static analysis. We
acknowledge that other existing studies [4, 18] have significantly
contributed to binary-only fuzzing, employing techniques such
as single successor and dominator-based instrumentation prun-
ing. However, static analysis in binary-only fuzzing, as a distinct
research contribution, falls beyond the scope of our article.

Tagger. To create a file with instruction tagging, Tagger starts
by determining the offset of the text section in the original file. Sub-
sequently, Tagger tags the instructions based on the static analysis-
generated file.

Configurer. In order to facilitate the programmer to config-
ure PHMon, PHMon provides the software interface. PHMon uses
custom RISC-V instructions to configure the MUs and CFUs of
PHMon and communicate with PHMon. To notify the coprocessor
to trace the dataflow, we modify the software interface of PH-
Mon. Tatoo adopts PHMon’s edge encoding algorithm to generate
pseudo-random IDs for each edge. We can also configure Tatoo to
be compatible with SNAP’s edge encoding algorithm, demonstrat-
ing the programmable coprocessor’s flexibility.

AFL Code Modification. We provide a software interface so
that the fuzzer can find the virtual address of the shared memory.
Thus, we can use the dataflow information to identify critical bytes.

4.2 Linux Kernel and Bootloader Modification

We modify lowRISC’s bootloader and the Linux kernel (version 4.6)
to support Tatoo. The bootloader is modified to support custom
instructions and delegate interrupt handling. The modifications of
Linux kernel are as follows:

DeviceDriver.Tatoo uses the device driver to collect the bitmap
and dataflow information. Upon fuzzer process initiation, the device

allocates a dedicated kernel memory region for the coverage bitmap
and dataflow, sharing the physical address with the coprocessor.
Then, the device driver supports memory remapping to userspace
for data processing during fuzzing. The kernel frees the previously
allocated memory upon fuzzer process closure.

Monitor.We manually specify the name of processes in Linux
to decide about the monitored program. The kernel dynamically
enables or disables the coprocessor upon the start or exit of the
monitored program.

Context Switch. If the fuzzer is only fuzzing one tested program,
the kernel only needs to enable and disable the coprocessor during
context switching. If fuzzing multiple programs under test, for
example, to detect different processes running on the same core,
the kernel needs to save the information of Tatoo when a context
switch into another process occurs.

Interrupt Handler. After the coprocessor’s queue overflows,
the coprocessor sends an interrupt to the processor, prompting the
kernel to wait until the coprocessor processes the queue before
resuming.
4.3 Hardware Modification

To facilitate implementation, we incorporate the PHMon coproces-
sor into the lowRISC processor. Because lowRISC processor lacks
support for compression instructions in RISC-V, the current pro-
totype does not support compression instructions. The hardware
modification consists of modifications to the main core and the
coprocessor.

Main Core Modification.We introduce a TU to transmit infor-
mation to the coprocessor. Unlike PHMon, Tatoo sends the values
of source registers and tag values to the coprocessor. Besides, we
add memory tagging. First, we add tag propagation in the pipeline
and cache to fulfill tag propagation. Second, a tag cache is added
between the last-level cache and the memory controller, serving as
an assembler. When the last-level cache needs to load the memory
with tags, it accesses the memory and tag memory respectively,
assembles them, and sends them back to the last-level cache. When
the last-level cache needs to store the memory with tags, it stores
the memory and tag memory separately. Moreover, we also modify
some exception trigger conditions in lowRISC.

Coprocessor Modification. We modify the MU to match the
values of source registers and tag values. In addition, the CFU is
adjusted to allow user configuration for handling different tags.
Besides, in the AU, PHMon configures memory type to indicate the
memory access byte width in one AU. As Tatoo requires updating
the coverage bitmap and dataflow information within one AU, it
allows configuring the memory access byte width in one specific
action.

5 EVALUATION

In this section, we focus on measuring the performance and hard-
ware overhead of Tatoo introduced by instruction tagging and
hardware tracing to answer the following questions:
RQ1: What is the performance overhead of Tatoo?
RQ2: How effective is Tatoo compared to AFL in enhancing
throughput and edge coverage?
RQ3: What is the hardware resource cost of Tatoo?

Config. The hardware configuration includes the Rocket Priv-
ileged Specification set at version 1.7, utilizing the RV64IMAFD
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Table 1: Target Binaries Evaluated in Our Evaluation

Subjects Size Change

objdump –dwarf-check -C -g -f -dwarf -x @@10.08 M to 12.79 M
readelf -a @@ 5.02 M to 7.92 M
size @@ 5.27 M to 5.34 M
nasm -f elf -o sample @@ 5.80 M to 8.04 M
bison @@ 5.22 M to 9.27 M
tiff2bw @@ /dev/null 1.29 M to 1.35 M
tiffnfo @@ 1.36 M to 1.40 M

instruction set architecture extensions with support for M, S, and U
modes. The lowRISC configuration adopts TagL2Config, indicating
a specific setup for the system. Additionally, the coprocessor is
configured with 4 match units and features a 1024-entry on-chip
buffer, contributing to the overall functionality of the prototype.

5.1 Performance Overhead
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Figure 2: The Overall Performance Measured by Real-World

Programs

Setup. To better understand the overall performance overhead
of Tatoo in real-world programs, we select 7 programs listed in
Table 1 for our experiments. Table 1 shows that the program size
changed after running LLVM ModulePass provided by AFL. The
instrumentation is performed using the afl-clang-fast mode.

To measure our overall overhead, we run four sets of comparison
experiments: the original programs, the programs instrumented by
AFL, the original programs running on PHMon, and the original
programs running on Tatoo. All the programs are processed to
communicate with the forkserver. The first two experiments are run
on the unmodified kernel and unmodified hardware. The last two
experiments are run on the modified kernel. We configure PHMon
to match all jump and branch instructions in text segments, and
PHMon only records coverage. We configure Tatoo records cover-
age and dataflow information like GreyOne. Tatoo only matches
the jump and branch instructions in the function that AFL instru-
ments. We run AFL on another machine to get 2,000 seeds for each
program and then run these different seeds within the forkserver.
In the end, we count the running time of each seed and took the
average. The baseline, which is standardized as 1, is the result of
the original program.

Result. In Figure 2, we find that the overall performance over-
head introduced by Tatoo is around 5% to 12%, and the average
performance overhead of AFL, PHMon, and Tatoo is 60%, 11.55%,
and 8.7%, respectively. Compared toAFL,Tatoo runs slightly slower
when AFL performs lightweight instrumentation (e.g., tiffinfo,
tiff2bw) because Tatoo requires instruction tagging and tracing

Table 2: Throughput in Our Evaluation

Binary AFL PHMON AFL_QEMU Tatoo

readelf 213,532 230,181 44,753 232,856
objdump 194,865 213,353 26,648 215,445
size 192,172 209,527 23,887 214,242
nasm 68,677 147,442 7,386 158,351
bison 158,394 185,359 24,190 201,095
tiffinfo 225,086 231,928 56,156 243,002
tiff2bw 227,444 234,146 53,124 242,670

dataflow. Tatoo is faster than AFL when AFL performs heavy-
weight instrumentation (e.g., nasm, bison). In Table 1, we notice
that the size of nasm and bison instrumented by AFL increased by
39% and 77% compared with the original size of the program. The
heavyweight instrumentation seriously affects the efficiency of AFL.
Compared to AFL, Tatoo accelerates coverage collection through
additional hardware when running these programs. Compared to
PHMon, Tatoo has better performance because PHMon needs to
trace all the branch and jump instructions in the text segment. In
addition, PHMon spends more time processing interrupts intro-
duced by overflow than Tatoo. For example, on objdump, PHMon
overflows 681 times, while Tatoo overflows only 20 times. The ex-
perimental results show that Tatoo runs faster than PHMon, which
proves that although instruction tagging introduces overhead, it
reduces overall performance overhead with the help of instruction
tagging.

5.2 Throughput and Coverage

Throughput.We executed 7 binary programs targeting different
fuzzing objectives. Table 2 demonstrates the fuzzing throughput
achieved by Tatoo and the compared tools over a 24-hour period
for 7 programs. Tatoo demonstrates significantly faster progress
in achieving upper coverage compared to other tools, surpassing
AFL and AFL_QEMU on the majority of programs. In particular, on
average, Tatoo shows an improvement of approximately 29.03%
over AFL, a remarkable 769.88% over AFL_QEMU, and a 4.10%
improvement over PHMON. Notably, Tatoo achieves a remarkable
increase in throughput compared to other tools, primarily attributed
to the optimization of the instrumentation quantity.

Coverage. Previous studies [2, 17] have demonstrated the effec-
tiveness of dataflow analysis. Due to the high time overhead and
limited availability of FPGA development boards for experimenta-
tion, we replay the coverage on different tools. The experimental
results reveal that Tatoo achieves an 8.2% higher edge coverage
compared to AFL, which achieves a higher edge coverage than
both PHMon and AFL_QEMU, except for tiff2bw. The subpar
performance of tiff2bw can be attributed to the hardware’s edge-
encoding algorithm. This experiment highlights that Tatoo can
improve coverage.

5.3 Hardware Resource Cost

Table 3 illustrates hardware resource costs for systems with and
without Tatoo. We observe an extra usage of 33.9% slice Look-Up
Tables (LUTs) and 33.8% slice registers across the systems. Tatoo in-
troduces memory overhead in memory tagging (15%) and hardware
tracing (18%). Taking into consideration that future devices will
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Table 3: Hardware Resource Cost of Tatoo

Whole Systems

Power

Slice LUTs Slice Registers

Without Tatoo 73,784 39,035 3.324W
With Tatoo 98,807 52,210 3.309W

% + 33.9% + 33.8% - 0.5%

implement memory tagging extensions and hardware tracing, the
result shows that the hardware resource cost of Tatoo is acceptable.

6 RELATEDWORK

Hardware-assisted Fuzzing. Some researchers utilize architec-
tural extensions like Intel PT and ARM CoreSight for fuzzing. PT-
fuzz [5] employs Intel PT to collect program branch information but
introduces performance overhead due to data packet decoding and
coverage calculation based on branch jump addresses. PTrix [23]
avoids decoding, directly converting data packets into coverage
information to reduce collection overhead. 𝜇AFL[21] uses ARM
Coresight for transparent execution info collection in IoT devices,
transmitting it for MCU firmware fuzz testing. It filters irrelevant
tracking information by specifying tracing regions or tracking spe-
cific memory instructions. PHMon [12] and SNAP [14] are the ex-
isting work of customizing hardware to assist binary-only fuzzing
on the RISC-V platform. SNAP integrates new microarchitectural
units in the CPU to update the coverage bitmap and provide richer
feedback to the fuzzer. Besides, It uses control flow information
and approximate dataflow provided by branch prediction to assist
fuzzing.

Previous approaches trace the instructions in a range of con-
figured addresses. In contrast, Tatoo utilizes instruction tagging,
employing binary analysis to filter out unnecessary instructions and
mitigating buffer overflow issues. Unlike traditional methods, which
largely lacked dataflow assistance except for SNAP, Tatoo traces ad-
ditional dataflow using taint inference. In contrast to SNAP, which
relies on approximate dataflow from branch prediction, Tatoo
utilizes accurate dataflow information, providing more effective
assistance in fuzzing.

Memory Tagging.Memory tagging [6, 8, 20], part of Armv8.5
and present in newer Armv9 CPUs like Cortex-X2, is expected to
be integrated into future Armv9-based CPUs for enhanced memory
security. Memory tagging involves assigning a unique tag to each
memory allocation, requiring all memory accesses to be conducted
through a pointer with the correct tag. Incorrect tags can be re-
ported by the operating system to the user or logged for further
analysis. Memory tagging serves several purposes: improving mem-
ory safety [8], information-flow control [20] and dynamic infor-
mation flow tracing [6]. In contrast to traditional memory tagging,
we employ instruction tagging to better complement hardware
tracing tools, enhancing their capabilities for fuzzing assistance.
Beyond fuzzing, Tatoo extends its applicability to fields like bi-
nary debugging like other hardware tracing tools. Tatoo allows
easy configuration of breakpoints and observation points by mem-
ory tagging. Unlike existing hardware with limited breakpoints,
Tatoo’s instruction tagging-based breakpoints offer enhanced con-
venience and flexibility for binary debugging. In essence, Tatoo’s
combination of memory tagging and hardware tracing renders it a
versatile platform adaptable to diverse domains.

7 CONCLUSION

In this paper, we present Tatoo, a customized hardware-assisted
fuzzing platform on RISC-V. Tatoo utilizes a coprocessor to collect
bitmap and valuable dataflow information. Additionally, we incor-
porate fine-grained tracing through instruction tagging, enabling
optimized binary-only fuzzing using static analysis techniques.
Experimental results demonstrate that Tatoo achieves efficient
tracing, exhibiting an improvement of 769.88% over AFL_QEMU,
the current state-of-the-art fuzzer.
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