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Abstract

Intrusion detection is an important defensive measure

for automotive communications security. Accurate frame

detection models assist vehicles to avoid malicious

attacks. Uncertainty and diversity regarding attack

methods make this task challenging. However, the

existing works have the limitation of only considering

local features or the weak feature mapping of multi-

features. To address these limitations, we present a

novel model for automotive intrusion detection by

spatial–temporal correlation (STC) features of in‐vehicle
communication traffic (intrusion detection system [IDS]).

Specifically, the proposed model exploits an encoding‐
detection architecture. In the encoder part, spatial

and temporal relations are encoded simultaneously.

To strengthen the relationship between features, the

attention‐based convolutional network still captures

spatial and channel features to increase the receptive

field, while attention‐long short‐term memory builds

meaningful relationships from previous time series or

crucial bytes. The encoded information is then passed

to detector for generating forceful spatial–temporal

attention features and enabling anomaly classification.

In particular, single‐frame and multiframe models are

constructed to present different advantages, respectively.

Under automatic hyperparameter selection based on
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Bayesian optimization, the model is trained to attain

the best performance. Extensive empirical studies based

on a real‐world vehicle attack data set demonstrate that

STC‐IDS has outperformed baseline methods and obtains

fewer false‐alarm rates while maintaining efficiency.

KEYWORD S

attention mechanism, control area network, intrusion detection
system, in‐vehicle networks, spatial–temporal features

1 | INTRODUCTION

Nowadays, a large number of electronic control units (ECUs) have replaced the mechanical
control units to manage the assorted functions of in‐vehicle control systems. The ECUs are
interconnected to exchange varied vehicle information with each other via networks referred to
as in‐vehicle networks (IVNs), such as controller area networks (CANs).1 Along with local
interconnected network LIN and FlexRay, CAN is well known and most employed as the
defactor standard for IVNs.2,3 It is noteworthy that CAN was developed as a broadcast‐based
communication protocol that supports the maximum baud rate up to 1Mbps. Furthermore, the
fault‐tolerant detection mechanism guarantees the stability of message transmission.

However, the CAN bus is potentially vulnerable to attacks owing to the lack of security
mechanisms, such as encryption, access control, and authentication.4–6 Cyber security is
becoming a major concern for IVNs systems as increasingly more security researchers
demonstrate their ability to launch attacks on actual vehicles.7 What can be investigated is
various attacks have been threatening several significant components of IVNs.4,8,9 For instance,
360 cyberattack Lab adopted electronic radio‐frequency technology to successfully hack into
Tesla in 2015.10 Miller et al. invaded the Jeep Cherokee's IVNs system using an open Wi‐Fi port
and reprogrammed the firmware of ECU. They succeeded in taking control of a wide range of
vehicle functions (e.g., disabling the brakes and stopping the engine), triggering a recall of 1.4
million vehicles.4 Thereafter, the electric features lift, warning lights, airbag, and tire pressure
monitoring system have also become the target of attack.11 Incredibly, these attacks have
multiple ways of being performed. As such, the study on the security of IVNs is attracting
significant attention from security researchers.12,13

There are many available methods that have the ability to protect IVNs secure, where IDS as
an effective defense method has attracted more attention from researchers.14,15 Currently, a
host of IDS schemes is rule‐based and statistical‐based. Although accuracy and efficiency are
excellent about some common attacks, the passive characteristic and the constant need for
updates result in a certain restriction.16 With the increase in vehicle computing power and the
maturity in machine learning (ML) technology, they promote the further development of IDS.17

Real‐time, higher detection, and lower false‐positive rates have been a fervent research problem
for deep learning (DL)‐based in‐vehicle IDS. Simultaneously, inadequate feature extraction,
complex network structure, and more parameters, also are pending breakthroughs.1,18 To
address such limitations, variants of IDS based on DL have been proposed in recent years.19,20

However, these variants merely consider the partial features, either time series of CAN
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intrusion detection (ID) or CAN data field. Moreover, spatial–temporal correlation (STC)
features have been shown to better capture the details of the message in anomaly detection,21–23

whereas how to create and represent the relationship between spatial–temporal features
becomes a vital concern to elevate detection performance in the automotive intrusion.24,25

Thus, the purpose of this paper is to provide STC features analyzing based‐enhanced
intrusion detection system (STC‐IDS). On the basis of an encoding‐detection architecture, the
intuition first trained a boosted convolutional long short‐term memory (LSTM) parallel feature
extraction model. Improved attention‐based LSTM network (A‐LSTM) captures the temporal
features and builds important relationships from previous sequences or crucial bytes.
Meanwhile, a reduced VGGNet network can learn the spatial features from CAN frames.
Moreover, the attention convolutional block (A‐Conv2D) enables attaining a broad perspective
through multichannel features to refine feature mapping. Unlike many previous methods, it
can concentrate more on changes in crucial areas and ignore bytes that are regular and
unchanging. Afterward, STCs between features are established to feed into the detector as a
two‐class classification problem. Note that both single‐frame and multiframe models are
considered in this paper to present different advantages, respectively.

This paper makes the following contributions.

1. On the basis of analyzing STC features of CAN messages in detail, we propose an enhanced
convolutional LSTM spatial–temporal feature encoder with attention. The single‐frame model
automatically captures the important byte relationships of each CAN frame and uses
convolutional components to find where key bytes are. Moreover, the multiframe model
captures significant relationships from previous time series, in which the attention convolutional
block, assisted by spatial attention and channel attention, is able to snap changes in crucial areas.

2. Further, the detector achieves anomaly detection for the constructed representative STC
features after multiview learning. We evaluated the detection performance of our scheme
using a publicly available real‐vehicle CAN data set. We also compare it with the baseline
model and show a significant improvement in detection performance and a reduction in
false‐positive rates and error rates.

3. By performing the injection attack in the same way, we calculated the detection efficiency of
the model on real vehicles. The multiframe model has sufficient ability to satisfy real‐time
detection. In addition, the single‐frame model combined with database retrieval has the
ability to trace anomalous ECUs.

The rest of this paper is organized as follows. Section 2 presents a discussion of related work
on CAN‐based IDS. Section 3 introduces the CAN bus protocol, vulnerability, and analyzes the
CAN frame with spatial–temporal. Section 4 proposes the parallel network model based on
spatial–temporal features analysis. The experiment result of the proposed model on the public
real‐vehicle data set is described in Section 5. Finally, we conclude this study and look ahead at
in‐vehicle IDS potential perspectives.

2 | RELATED WORK

In this section, we provide an in‐depth discussion about the research situation in anomaly detection
and ID for in‐vehicle CAN communication systems. They are divided into four categories, namely,
specification‐, fingerprint‐, statistical‐, and ML‐based approaches, as summarized in Table 1.

9534 | CHENG ET AL.
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2.1 | ID model based on specification

The specification‐based IDS focuses on defining system specifications, such as protocols and
frame formats. When packets mismatch the system specification, an exception alarm is raised.
In 2016, Dagan and Wool27 introduced an antispoofing system that detects malicious messages
using each ECU, that is, by detecting CAN message ID that was not sent by the ECU itself.
Thereafter, the ECU informs the IDS, and then an interrupt pulse is sent to the CAN bus to
overwrite the spoofed message. However, each ECU undertakes the IDS role, which increases a
certain burden on communication.

In 2018, Studnia et al.26 presented a signature‐based IDS which utilize a list of signature
derived from CAN data set. However, this method is subject to the limitation that the length
of the CAN bus words may not be known a priori. Recently, Olufowobi et al.20 proposed a
real‐time IDS based on specification. The algorithm extracted the timing model to detect
anomalies through observing CAN traffic rather than depending on predefined specifica-
tions, yet exhibited relatively poor performance in the real attack data set.

2.2 | ID model based on fingerprint

The fingerprint‐based approaches are mainly based on profiles defined by ECU characteristics
to implement anomaly detection. In 2016, Cho and Shin28 proposed clock‐based IDS to analyze
ECUs periodic frequency. The method established the ECUs clock baseline through the
recursive least‐squares algorithm to detect intrusion. But it is workable only to periodic
messages excluding nonperiodic messages.

Interestingly, Choi et al.29 found a method to establish the electrical signal characteristics of
each ECU using the physical layer data of CAN communication, and harness these signal
characteristics as the fingerprint for each ECU. Regrettably, the electrical characteristics may
change as the vehicle ages, and thus the IDS needs to keep updating.

2.3 | ID model based on statistical

Unlike previous methods, the statistics‐based approach implements anomaly detection by
means of statistical information obtained from CAN traffic at the network level. Song et al.30

introduced a lightweight IDS in 2016 that detected anomalies by monitoring the abnormally
shortened intervals between messages. Although the proposed algorithm could have highly
sensitive to common injection attacks and low computing cost, it cannot detect irregular
incoming messages.

Furthermore, Young et al.31 comprehensively analyzed the frequency characteristics of
CAN messages in various driving modes, such as reverse, acceleration, and hold speed, and
then proposed a frequency‐based IDS. In spite of the high detection accuracy, there is a high
false‐alarm rate. Manifestly, an IDS based on conditional statistical relationship analysis to
learn the normal behavior of the system can detect manipulations and incorrect payload
values,37 but still does not satisfy the high detection rate and low latency required by present‐
day IVNs for anomalous traffic.38
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2.4 | ID model based on DL

ML‐ and DL‐based IDSs are an excellent option for extracting and learning normal or abnormal
behavior, which provides models with detect and predict ability.39,40 Kang and Kang32 constructed a
deep confidence network under unsupervised learning to detect if anomalies deviate from normal.
However, inefficient and only validation of simulation data is not sufficient.

In 2019, Pawelec et al.35 proposed a three‐layer LSTM neural network to predict the data
payload for each CAN ID, which avoided reverse engineering proprietary encoding. Similarly,
Qin et al.19 also implemented anomaly detection for CAN bus based on timing features by
LSTM and reconsidered two data formats of CAN frames. Although these methods are
implemented at the CAN bits level, they only consider timing characteristics and have
relatively poor detection performance. Recently, convolutional neural networks (CNNs) have
been implemented for traffic detection and praised for their high detection efficiency.41

Song et al.36 presented a reduced inception residual network to construct an IDS capable of
detecting spoofing and denial of service (DoS) attacks in a continuous pattern of vehicular traffic.
Since the assistance of spatial–temporal relation is not taken into account, there is still room for
improvement in the false‐positive rate. In other studies, Tariq et al.34 introduced a convolutional
LSTM‐based ID method. Although it displayed excellent detection performance in unknown
attacks than transfer learning, known attacks performance relatively worse than may be caused by
the relevance of the CAN message features being discarded. Moreover, a multitiered hybrid IDS
that incorporates a signature‐based IDS and an anomaly‐based IDS is proposed to detect both
known and unknown attacks on vehicular networks by Yang et al.33 in 2021. Their model has been
proven that is effective for attacks on both in‐vehicle and external networks. However, modeling
with spatial–temporal features might take performance a step further.

However, these ML‐ and DL‐based methods have different in selecting the detection
domain, typically the detection arbitration domain, the detection data domain, and the similar
to our work that the spatial–temporal feature extraction. In a nutshell, traditional methods
based on specification, fingerprint, and statistical have limitations in terms of reliance on
anomaly feature libraries, message frequency, message time domain, and fingerprint
information. Instead, it is imperative in the ML and DL area to improve automotive IDS
detection performance and reduce false positives by complementing spatial–temporal features
in a limited message communication mode. Furthermore, the model trained with limited
spatial–temporal features will not effectively improve the detection performance.

Considering the nature of attention mechanisms to capture essential features, the
generation of spatial–temporal attention features is one of the potential ways to address the
above problem.42 Hence, modeling the normal behavior of CAN packets in combination with
spatial–temporal attention features and then discovering the difference between anomalies and
target traffic is still one of the ways to improve in‐vehicle IDS.

3 | AN IN ‐DEPTH OVERVIEW OF CAN BUS DATA SET

3.1 | Vulnerabilities of IVNs

Intelligent connected vehicles (ICVs), integrating modern computing and communication
technologies, are designed to improve user experience and driving safety. As the most significant
communication medium, the CAN is the most prevalent bus topology network employed in
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contemporary vehicles owing to its low cost and complexity, high reliability,
and fault‐tolerance characteristics.43,44 All ECUs, connected to the CAN bus, are capable of
exchanging messages in the form of data frames.45,46 Figure 1 presents the structure of a CAN
message, consisting of seven fields47: (1) start of frame (1 bit); (2) arbitration field (12 bits for
standard frames and 29 bits for extended frames); (3) control field (6 bits); (4) data field (maximally
8 bytes); (5) cyclic redundancy code (CRC) field; (6) acknowledge (ACK) field; and (7) end of frame.

In the entire CAN frame, the most important is the arbitration field and the data field, as the
arbitration field determines the priority of the message,48 shown in Figure 2A; the data field
contains the actual transmitted data that defines the node actions. Moreover, if an error is
detected by the CRC field, the receiving node will discard the received error message, while the
sending node will only assume a transient fault on the bus and enter arbitration to resend the
message frame,49,50 shown in Figure 2B. To guarantee the system consistency, the ECU
broadcasts messages at regular intervals in spite of the data values have not changed. However,
security problems were poor‐needy thought out at the beginning of the CAN bus design,51

including its broadcast transmission strategy, lack of authentication and encryption, and
unsecured priority scheme. Hence, many network traffic injection attacks are possible.

This directly motivates the adversary to attack IVNs in a variety of ways, as shown in
Figure 3. Clearly, the adversary can not only through the On‐Board Diagnostics II (OBD‐II)
port for physical attacks but also implement a remote attack easily (e.g., Wi‐Fi or Bluetooth).10

Types of such attacks include flooding the bus with messages designed to circumvent legitimate

FIGURE 1 Structure of a CAN 2.0A message frame. ACK, acknowledge; CAN, controller area
network; CRC, cyclic redundancy code; DEL, delimiter; DLC, data length code; EOF, end of frame; ID, intrusion
detection; IDE, identifier extension; RTR, remote transmission request; SOF, start of frame. [Color figure can be
viewed at wileyonlinelibrary.com]

(A)

(B)

FIGURE 2 Conceptual diagram of the message priority and CRC detection. CAN, controller area
network; CRC, cyclic redundancy code; ECU, electronic control unit. [Color figure can be viewed at
wileyonlinelibrary.com]
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messages or using spoofed bus identifiers with invalid information.36 Furthermore, there are
more sophisticated and stealthy attacks.52 These attacks appear to be legitimate traffic
sequences that are tough to distinguish from normal messages.1

Once the attacker has successfully compromised, it has the opportunity to forge ECU nodes and
take control of incumbent nodes to inject nefarious messages.53,54 In the CAN protocol, the
connected nodes are synchronized with the current vehicle state by accepting the data field bits of
the frame.36 Consequently, to successfully deceive the ECU, the adversary must insert tampering
messages in a high frequency and priority manner by following the target CAN ID message
immediately after the message.55 If the attacker injects a high‐priority CAN frame, where the data
field is populated with a status command to turn off the “wiper,” the driver loses judgment and
even serious traffic accidents in rainy conditions while driving at high speed.56

3.2 | STC feature analyzing for CAN data set

In this paper, we utilized car‐hacking data set which is published by Song et al.52 This data set
is injected with four attacks, respectively, DoS attack, fuzzy attack, spoofing attack, including
revolutions per minute (RPM) and Gear, as illustrated in Figure 4. The detailed injection rules
are as follows.

1. DoS attack: DoS attacks in the data set are to inject a high priority message with a “0x000”
CAN ID every 0.3 ms, with the data field populated with 0.

2. Fuzzy attack: Fuzzy attacks in data set are injected every 0.5 ms with CAN messages where
the CAN ID and DATA values are forged randomly.

3. Spoofing attack: Spoofing attacks in data set are injected messages every 1ms with a specific
CAN ID, for example, related to RPM/Gear.

Table 2 indicates the number of normal and injected messages in each attack data set. To
summarize the spatial–temporal details of normal CAN bus traffic during the operation of a real
vehicle, we first investigated the communication patterns of different CAN IDs. Since the data set is

FIGURE 3 Scenario in which an attacker performs an injection attack can be a remote attack or a physical
attack can be implemented. CAN, controller area network; ECU, electronic control unit; LTE, Long‐Term
Evolution; OBD‐II, On‐Board Diagnostics II. [Color figure can be viewed at wileyonlinelibrary.com]
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not publicly available as to the receiving sender and receiver of the data, the paper analyzes the
CAN protocol table of a brand from our laboratory. We find that an ECU has a fixed set of CAN IDs
(e.g., engine mangement system, containing 0 × 101, 0 × 278, and 0 × 281) and that the recipients of
the different CAN IDs are also fixed (e.g., 0 × 101, containing telematics control unit, electronic
stability program, electrical park brake, and T‐BOX). This is the initial purpose to design a single‐
frame detection model capable of tracking unauthorized ECUs and protecting nonattacked ECUs.

Additionally, the frequency of the different IDs is fixed by the vehicle manufacturer. It is worth
noting that important automotive components have a higher priority. Hence, time‐series features are
reflected in the ID of the CAN messages. Despite the fact that there are some event‐triggered
messages with variable frequency, the set of commands is also fixed. The details are shown in Table 3.

Spatial feature expression, especially the data field of the CAN frame, is most significant. Most
new messages are generated at a steady rate over the period of data acquisition in the data set. In
this study, the spatial signature analysis was based on the data segment, and a single message often
had a regular change in timing. We analyzed this and aggregated the messages of different periodic
variation rules. Table 4 displays some CAN message of different CAN IDs from the data set, where
the omissions represent the same transferred bytes. We can observe that they have certain fixed
byte constants (e.g., the first 7 bytes of ID= 0x260), as well as fields that change more frequently
(e.g., the third bytes of ID= 0x316), but only in a certain range. There are distinct spatial
characteristics of the data field, useful for modeling the normal behavior of the CAN packet, and
also inspire the requirement to design attention convolutional blocks.

To more visually observe the byte change patterns, the data fields for each message are
displayed in a heat map, as shown in Figure 5. To apparently visualize the differences in
variation of each byte, this paper presents 100 consecutive communication messages based on
three important CAN IDs, such as gear and speed. There is a certain period of color shade
variation at ID = 0x260 and ID = 0x43F, while the messages sent by the RPM‐specific IDs are
clearly irregular, corresponding to the summary in Table 4.

FIGURE 4 Illustration of the injection process of utilized in‐vehicle intrusion data set. CAN, controller area
network; ECU, electronic control unit. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Overview of car‐hacking data set

Attack type Normal messages Injected messages

DoS attack 3,078,250 587,521

Fuzzy attack 3,347,013 491,847

RPM attack 2,766,522 597,252

Gear attack 2,290,185 654,897

Abbreviations: DoS, denial of service; RPM, revolutions per minute.
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TABLE 4 Analyzing range statistics of message frame

ID Transmitter 1 2 3 4 5 6 7 8

0x260 N/A 05 22 00 30 FF 99 63 38

0B

1A

29

0x316 RPM 05 22 6A 0B 21 18 00 7F

22 16 22

23 3A 23

24 1A 24

0x43F Gear 10 50 60 FF 46 28 0A 00

0C

10

F0

Abbreviation: RPM, revolutions per minute.

FIGURE 5 Value distribution by heatmap in hexadecimal form of each bit of CAN frame for different ID
includes ID = 0x260, ID = 0x316, and ID= 0x43F. CAN, controller area network; ID, intrusion detection. [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Partial ECU transmission, reception, and time cycle of an automotive brand

ID Transmitter Periods Receiver

0x101 EMS 10 TCU, ESP, EPB, T‐BOX

0x278 EMS 10 TCU, GSM, ABS, ESP, EPS, EPB, PEPS

0x281 EMS 100 TCU, AC, ICU, HUD, T‐BOX

0x1A0 TCU 10 EMS, GSM, ESP, EPB, PEPS, DRC, PDC

0x211 ESP 10 TCU, ESP, EPB, T‐BOX

… … … …

0x2EA ABS 20 EMS, TCU, EPB, ICU, T‐BOX, APA

0x68A NVS 500 HUD, PSW

Abbreviations: ABS, antilock brake system; ECU, electronic control unit; EMS, engine mangement system; EPB, electrical park
brake; ESP, electronic stability program; GSM, global system for mobile communications; HUD, head up display; NVS, night vision
system; PEPS, passive entry & push start; PSW, part submission warrant; T‐BOX, telematics BOX; TCU, telematics control unit.
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In conclusion, spatial–temporal details are useful for modeling the normal behavior of
CAN packets, and attention also focuses on bytes that change frequently and time‐series
important relationships, thus helping the model to quickly detect violations and determine
the targeted traffic.

4 | IDS USING STC FEATURE

4.1 | Data set preprocessing

It is impractical to train an IDS based on the neural network on the original CAN data set,
so data preprocessing is a necessary part before model training. The payload field is 8 bytes
as shown in Table 4, where each byte is represented by two numbers in hexadecimal format.
In fact, the public source data set was progressively judged and found to contain a large
number of data frames that were inferior to 8 bytes or irregular. To ensure uniformity of
model input, we filled in the missing data frames with “00” in two scenarios: (1) where the
data frame is less than 8 bytes and (2) where only the single digit “0” is used to represent a
byte. Afterward, we split and transformed the arbitration bits and data domain in the data
set into a trainable data set containing 19 features, respectively, 16 features in 8 bytes of the
data domain. In particular, the CAN ID is partitioned into 3 bits to harmonize the operation
with the split data field. On the one hand, the combination of hexadecimal features of the
original multibit will not be too far removed from the data field features due to the
introduction of temporal‐frequency features; on the other hand, all messages provided by
the public data set have only three valid bits in hexadecimal.

In addition, the values of all features are converted to decimal from hexadecimal. After
implementing missing data padding and decimal conversion to meet the basic inputs for the
model, several additional data preprocessing steps still need to be completed. First, the
CAN frame type is encoded using a label encoder, which is used to convert categorical
features into numerical features owing to many ML‐ and DL‐based algorithms that cannot
directly support string features.33 Thereafter, the network data set is normalized by the
Min–Max algorithm, as the features collected in network traffic data often have a wide
range of differences that impose model deviations and emphasize only large‐scale features.
Furthermore, the ML‐ and DL‐based models are proven to perform more convergent easily
on normalized data set.57,58 Hence, the data normalization by the Min–Max method is
calculated as

X
X X

X X
=

−

−
.norm

min

max min
(1)

The method implements equal scaling of the original data, where Xnorm is the
normalized data, X is the original data, and Xmax and Xmin are the maximum and minimum
values of the original data set, respectively. Table 5 presents the CAN data that is available
as model input, where the former three columns are the CAN ID feature fields, the next
eight columns in each message present 16 data domain fields, and the last column
represents the label in digital form for each message. In addition, the first two rows
represent the distribution for normal CAN data features, while the distribution for injection
attacks is the third row. For multiframe detection, the encoder requires an additional image
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conversion step that splits the collected data set into 64 × 19 two‐dimensional (2D) images.
After the normalization completing, to prevent the same attacks from appearing in both the
test and the segmented attack data, data set division is for 10‐fold cross‐validation via
StratifiedKFold function in sklearn library.

4.2 | STC‐IDS model design

The STC‐IDS consists of two steps: encoding and detection. The encoder is an analysis of the
spatial–temporal characteristics of the CAN messages, and capturing the important relation-
ships based on attention to it; the detector achieves anomaly classification of the valuable
spatial–temporal features.

4.2.1 | STC‐IDS for single‐frame detection

From the perspective of single‐frame ID, our aim is to retrieve the illegally controlled
source ECU in conjunction with the CAN ID (i.e., accurate identification of every abnormal
traffic). In the training phase, we extract spatial features at 1D data by CNN. Since the input
of the proposed model is defined as 1 × 19, the spatial component extracts valuable features
only through three convolutional blocks and a global pooling layer to avoid invalidating
features because of the deeper network. Each convolutional block consists of a 1D
convolutional layer, a batch‐normalization layer, and an activation function Rectified
Linear Unit (ReLU). The batch‐normalization allows the model to discard the learning of
biases, and make the convolutional output of the model homogeneous particularly. The
ReLU function makes the network realize nonlinear feature mapping, while the global
pooling serves to assist the model in searching for where critical bytes are and reducing
redundant information.

Attention actually mimics a visual mechanism of the human brain, seen as an automatic
weighting scheme.42 Hence, an improved LSTM structure with the attention mechanism
(A‐LSTM) is designed as a temporal component. We recognize the input as a multivariate
time series with a single time step that is initially handled by the dimensional shuffling
layer to increase the multivariate processing speed. When the features are fed into the
A‐LSTM blocks, it can mine significant temporal features. To prevent overfitting, the

TABLE 5 Preprocessed data set is represented with the labels divided into normal (0) and intrusion (1)

ID Data

ID1 ID2 ID3 Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Label

0.2 0.06 0.4 0 0.13 0.4 0 0.13 0.13 0 0.4 0

0.2 0.06 0.53 0.6 0.06 0.06 0 1

0.06 0.53 1 1 0.33 0 0 0 0.2 0 0 0

0.93 0.73 0 0 0 0.8 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0
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discard layer plays a crucial role. Overall, the A‐LSTM component could discover crucial
byte changes, calculated as

∕ ( ) ( )a u u u u= exp exp ,b b
T

w

b
b
T

w (2)

where uw is the weight matrix, and ub means the implicit representation of the hidden state hb
at computation feature bit b. The ub is calculated as

u W h b= tanh( + ),b w b w (3)

whereWw is the weight matrix and bw is the bias. Afterward, we attain the attention probability
distribution value at each byte. Finally, the final feature vector v is calculated as

v a h= .
b

b b (4)

In Figure 6, we present a parallel feature extraction classification model for single‐frame
detection. Both features are finally aggregated by the fully connected layers. We refer to it as the
CAN valuable feature for STC under multiview learning. Finally, it is fed into the final
classification component, which has specific elaboration in algorithm 1.

Algorithm 1 STC‐IDS for single‐frame

1: Require: Input Data X , LSTM‐Times = 2, Convolutional‐Times = 3;

2: Temporal Phase:

3: X temporal =Dimension shuffle(X );

4: for Times to LSTM‐Times do

5: hb = LSTM(X temporal );

6: u W h b= tanh( + )b w b w ;

7: ∕ a u u u u= exp( ) exp( )b b
T

w b b
T

w ;

8: v a h= t b b;

9: X temporal =Dropout(v);

10: end for

11: Spatial Phase:

12: X spatial = X ;

13: for Times to Convolutional‐Times do

14: X =Conv1D(X spatial )

15: X =Batch‐Normalization(X )

16: X =ReLU(X )

17: X spatial = X

18: end for

19: X spatial =Global‐Pooling(X spatial )

20: X spatial‐temporal =Concatenate(X X,spatial temporal )

21: X spatial‐temporal =Dense(X spatial‐temporal )

22: ŷ = Softmax(X spatial‐temporal )
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4.2.2 | STC‐IDS for multiframe detection

To further elevate the efficiency, multiframe‐based IDS is constructed. In other words, the
model retrieves a continuous CAN 2D matrix, aggregated from 64 consecutive CAN messages
during data preprocessing. The matrix height 64 represents the length of the historical time
series that the model could recall. For supervised learning, 2D data frames that contain one or
more injection messages are marked as attack CAN instance, while data frames that do not
contain injection messages are marked as normal CAN instance.

As shown in Figure 7, the 2D data frames are fed into the parallel networks. For the
temporal feature extraction component, we remain the structure as same as the single‐frame
model, but the model input is a time series in 2D so that A‐LSTM can pay more attention to
important relationships from previous time series. After the dimensional shuffling layer swap
out the time dimension of the time series, the processed time series are fed into the A‐LSTM
blocks. However, the three main parameters in the single‐frame temporal attention model, that
is, u h a, ,b b b, need to be redefined as u h a, ,t t t. ut indicates the implicit representation of the
hidden state ht at computation time t , while at represents the final computed attention value.

Moreover, the spatial feature extraction component is inspired by the VGGNet model. We
keep the feature extraction capability of the model, but modify the number of convolutional
layers and channels to adapt the CAN data set. It is composed of three convolutional blocks,
where a convolutional module consists of a 2D convolutional layer, a batch‐normalization
layer, and a max‐pooling layer.

Since the convolutional layer has the feature of shared weight, the proposed model
reduces the complexity and improves the inference efficiency. For instance, if a
64 × 19 × 3 feature is mapped into a 62 × 17 × 6 volume, the full‐connected layer requires

M(64 × 19 × 3) × (62 × 17 × 6) = 22 weights, while the convolutional layer via 3 × 3

convolutional kernels only require (3 × 3 × 3) × 6 = 162 weights. Figure 8 illustrates the

FIGURE 6 To illustrate the single‐frame detection neural network. LSTM, long short‐term memory; ReLU,
Rectified Linear Unit. [Color figure can be viewed at wileyonlinelibrary.com]
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difference between convolutional and fully connected layer computations. The multiframe
detection also has the capability to remove redundant information, and reduce the
computational effort with the help of the max‐pooling layer. The convolutional block
maps the raw data to the hidden feature space, thereby performing the task of feature
engineering to improve the performance of the spatial component. The fully connected
layer serves to map the learned “distributed feature representation” to the sample markup
space. Hence, STC features are extracted in a parallel network, and then aggregated by a
fully connected layer to finish the classification task.

FIGURE 8 In the computation of neurons in the convolutional and fully connected layers, it is clear that
the former is smaller than the latter, due to the dense connectivity. CAN, controller area network. [Color figure
can be viewed at wileyonlinelibrary.com]

FIGURE 7 To illustrate the multiframe detection neural network. LSTM, long short‐term memory; ReLU,
Rectified Linear Unit. [Color figure can be viewed at wileyonlinelibrary.com]
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Most importantly, the second convolutional component is enhanced with visual attention
mechanism, called A‐Conv2D. The core idea of the component is to help the network extract
and represent the information most relevant to the target. For instance, we usually focus on
significant information when viewing a photograph, and summarize it. Observing Table 2 and
the heat map in Figure 5, there are clearly crucial information changes in the bytes as a 2D data
frame. Recently, channel and spatial attention are mentioned in the CNN.59 Inspired by the
idea, the proposed structure integrates such ways, which can assist the model to find where the
key information is and where the channel features are learned. The mode has the capability to
self‐select important features and eliminate the feature engineering step. Hence, convolutional
branches of the intermediate layer can obtain a convolutional feature with spatial attention and
channel attention. This additional structure is essentially cascaded over the original network
with the purpose of better extracting valuable features. In summary, attention convolutional
module features are calculated as follows:



  

F M F F

M M F F M F F

= ( )

= ( ( ) ) ( ( ) ).

merge s c c

s c c
(5)

where Fmerge is the aggregated feature. M Mandc s are channel attention weight coefficients
and spatial attention weight coefficients, respectively, while F is the input feature and Fc is the
channel attention feature.

In Figure 9, the feature maps built by the first convolution block are extracted deep features
and attention coefficients through the attention convolution component. Initially, the max‐
pooling and average‐pooling layers aggregate spatial attention information to generate two
different spatial context descriptions. Immediately afterward, the two features are added
together by the multilayer perceptron (MLP). Note that the MLP is weight‐sharing to realize

FIGURE 9 Schematic representation of the CAN image computed in the attention convolution module. The
channel module utilizes the shared network to output the max‐pooling and average‐pooling computed features;
the spatial attention module pools the pooling output along the channel axis and computes the final features
through the convolution layer. 2D, two‐dimensional; CAN, controller area network; MLP, multilayer
perceptron. [Color figure can be viewed at wileyonlinelibrary.com]
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information sharing. Finally, the weight coefficients Mc are obtained through the sigmoid
activation function, which is calculated as

( )( ) ( )( ) ( )
M σ F F

σ W W F W W F

= (MLP(AvgPool( )) + MLP(MaxPool( )))

= + ,

c

1 0 avg
c

1 0 max
c (6)

After getting the weight coefficients Mc, the channel attention feature Fc is calculated as
follows:

F M F F= ( ) ,c c (7)

where σ is the activation function, andW0 andW1 are the weight matrices of the convergence
layer.

The spatial attention module is a stable complement to channel attention information
because of its ability to mine where the key features are. Similarly, given an H W C× × feature
Fc, two H W× × 1 channel descriptions are obtained by averaging pooling and maximum
pooling in one channel dimension. Thereafter, the channel descriptions are stitched together
based on the channel. Finally, a 2 × 2 convolutional layer with a sigmoid activation function is
applied to obtain the weight coefficient Ms, which is calculated as follows:







( )( )

M σ f F F

σ f F F

= ( ([AvgPool( ); MaxPool( )]))

= ; .

s
2×2

c c

2×2
avg
s

max
s (8)

where the f ( )2×2 represents the convolutional computation, Favg
s and Fmax

s represent the two
channel descriptions. Thus, the spatial‐channel attention aggregation feature Fmerge is obtained
by multiplying the weight coefficients Ms with the feature Fc. The feature Fmerge is continued
calculated by the normal convolutional component, and then aggregated with the temporal
feature to build the spatial–temporal features. The fully connected layer maps the
spatial–temporal feature to sample markup space to finish the two‐class classification task.
Specifically, the multiframe model is described in algorithm 2.

Algorithm 2 STC‐IDS for multiframe

1: Require: Input Data X , LSTM‐Times = 2, Convolution‐Times = 3;

2: Temporal Phase:

3: X temporal =Dimension shuffle(X );

4: for Times to LSTM‐Times do

5: ht =LSTM(X temporal );

6: u W h b= tanh( + )t w t w ;

7: ∕ a u u u u= exp( ) exp( )t t
T

w t t
T

w ;

8: v a h= t t t;

9: X temporal =Dropout(v);

10: end for

11: Spatial Phase:

12: X spatial = X ;

(Continues)
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13: for Times to Convolution‐Times do

14: F =Conv2D(X spatial )

15: F =Batch‐Normalization(X )

16: F =ReLU(F )

17: F =Max‐Pooling(F )
18: if Times == 2 then

19: M =c Channel Attention(F )

20: F M F=c c

21: M =s Spatial Attention(Fc)

22: F M F=merge s c

23: X spatial = Fmerge

24: else

25: X spatial = F

26: end if

27: end for

28: X spatial =Dense(X spatial )

29: X spatial‐temporal =Concatenate(X X,spatial temporal )

30: X spatial‐temporal =Dense(X spatial‐temporal )

31: ŷ = Softmax(X spatial‐temporal )

4.2.3 | Classification loss

For the ID based on classification, the loss value can be obtained according to the comparison
between the prediction label and the actual label. On the basis of this loss message, the loss
calculation method is used for the two data formats as discriminant marks for detection. Hence,
the predicted values ŷi are calculated as follows.


y p c i x

w f b

ˆ = ( = )

= softmax( + ) (for i = 0, 1),
i

x
(9)

where fx is the combining features and ŷi present the probability distribution over
target classes zero and one. With the fusion of two structures, the model becomes more
complex generating overfit phenomena easily. For better generalization of the model, L2
regularization is set in the network layer to limit the gradient. Besides, we need to
continuously optimize by backpropagation to reduce loss value, and fit the model to the
best structure, to maximize the predicted probability p. The loss function is calculated as
follows.

 




 

 

L
N

L λ w

N
y p y p λ w

=
1

+

=
1

− [ log( ) + (1 − ) log(1 − )] + .

i

i

i
i i i i

2

2
(10)
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5 | EVALUATION

We now validate that the STC feature can be used to detect anomaly frames, and evaluate the
performance of a CAN bus prototype and real vehicles.

5.1 | Evaluation metrics and experiment environment

In this paper, statistical metrics true positive (TP) and true negative (TN) are introduced to
indicate the number of frames correctly classified as attack and normal, while metrics false
positive (FP) and false negative (FN) are introduced to indicate the number of data frames that
are misclassified as attack and normal. The model accuracy formula is as follows.

∕Acc = (TP + TN) (TP + FN + FP + TN). (11)

Precision (P) and recall (R) are considered as evaluation metrics to assess classification
performance. Precision refers to the rate at which the actual data frame labels are detected
correctly, while recall represents the proportion of all attack frame samples that end up in the
attack frame class, which are calculated as follows.

P = TP/(TP + FP) (12)

and

R = TP/(TP + FN). (13)

The F1 score evaluation is also presented, which is a harmonic average based on the
detection precision and completeness. Also, the F1 score is often used to measure classification
performance when the data are unevenly distributed, which is calculated as follows.

F P R P R1 = 2 × × /( + ). (14)

Additionally, the false negative rate (FNR) and the error rate (ER) are the one way of
assessing classification performance. The FNR is the proportion of frames that are not detected
as belonging to the attack frame and the ER is the proportion of frames that are incorrectly
classified, calculated as follows.

FNR = FN/(TP + FN). (15)

and

ER = (FN + FP)/(TN + TP + FN + FP). (16)

The two models designed in this paper were trained offline based on the data set, while the
testing phase was based on real vehicles, injected with malicious frames of the same rules, to
check the performance and efficiency of the models. The following is the experimental training
and testing environment.
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1. Intel(R) Core (TM) i7‐9500U CPU@3.6 GHz.
2. RAM: 64.0 GB.
3. GPU RTX 2080 Ti (training environment).
4. CAN Test, NVIDIA Jetson AGX Xavier (16 GB) (testing environment).

5.2 | Hyperparameter selection and optimization

The selection of hyperparameters is a crucial step in network performance and inference
efficiency. Currently, automated hyperparametric optimization (HPO) services and tool‐kits
address the constant trial‐and‐error steps of DL developers.60 In this paper, Bayesian
optimization (BO) automatic parametric tuning is used to quickly determine hyperparameters.
It is a typical method applied to global optimization problems. Compared with grid search and
stochastic search, BO is more computationally efficient and requires fewer attempts to find the
optimal set of hyperparameters.57

On the basis of the BO optimization library provided by Keras‐Tuner and on a 10‐fold cross‐
validation data set, we selected important hyperparameters, such as learning rate (1e− 2,
1e− 3, 1e− 4, 1e− 5, and 1e− 6), optimizer (e.g., Adam, SGD, and RMSprop), dropout rate,
and filters. Afterward, we set the optimization goal to validate the accuracy (Val‐Acc), a
maximum number of trials of 10, and train the model three times per trial. Finally, the
optimization results will present the set of the top three hyperparameters for performance.

As shown in Table 6, the average accuracy on the cross‐validation set reaches 99.98% in the
single‐frame model when setting the learning rate is 1e− 6, the dropout rate is 0.4, the filters
are 16, 32, and 128, the dense layer is 64, and the optimizer is Adam. Similarly, the accuracy is
achieved up to 99.96% to the multiframe model under the optimal hyperparameters.

Interestingly, the inference speed of the model was significantly accelerated aided by the optimal
hyperparameters. Despite the higher detection performance was obtained by the single‐frame model,
the inference speed is slower. Relative to multiframe, it took 50 iterations to converge, whereas the
multiframe model only took 30 generations. Figure 10 shows the iterative training losses for each data
set. It can be observed that since the DoS attack disrupts the frequency of injection, both models learn
the patterns and converge quickly. However, as the complexity of attack data increases, the fuzzy and
spoofing attacks injected with random data converge slower in the single‐frame model, while the
training loss convergence fluctuates significantly in the multiframe model.

TABLE 6 Effect of hyperparameters on model performance under automated HPO

Model type Learning rate Dropout rate Filters Dense Optimizer Val‐Acc

Single frame 1e− 6 0.4 16, 32, 128 64 Adam 0.9998

1e− 6 0.4 8, 96, 32 48 Adam 0.9935

1e− 6 0.4 8, 16, 192 80 Adam 0.9869

Multiframe 1e− 2 0.4 64, 16, 32 128 Adam 0.9996

1e− 2 0 8, 16, 32 128 Adam 0.9993

1e− 2 0 24, 80, 96 256 Adam 0.9992

Note: Best hyperparameters set are highlighted in bold due to the highest validate accuracy.

Abbreviations: HPO, hyperparametric optimization; Val‐Acc, validate the accuracy.
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5.3 | Detection metrics evaluation and comparison

After training the best two models according to the set hyperparameters, Figure 11 shows the
detection performance of the models in terms of ER and FNR for the four‐attack testing
sets in 30 repeated experiments. The two proposed models, both in terms of FNR and ER,
present stable performance to detect DoS attacks with mean values of 0.0047%, 0.0204%, 0.0159%,
and 0.0094%. On the contrary, the fuzzy attacks show greater fluctuations in detection performance.
The complexity of fuzzy attack data seems to be significantly higher than the other injected data,
necessitating more training iterations to construct a stable model. Hence, the ultimate mean values
of FNR are still 0.0328% and 0.0413%, as well as ER gets 0.0435% and 0.0864%.

FIGURE 10 To illustrate training loss on each data set in single‐frame (A) and multiframe (B) algorithms.
DoS, denial of service. DoS, denial of service; ER, error rate; FNR, false negative rate. [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 11 Box‐plots of single‐frame and multiframe models measuring FNR and ER in 30 replicate
experiments. DoS, denial of service; ER, error rate; FNR, false negative rate. [Color figure can be viewed at
wileyonlinelibrary.com]
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Although FNR and ER on spoofing attacks are higher than DoS attacks, they achieve stable
and better results compared with fuzzy attacks. The single‐frame detector averages 0.0251% and
0.0353% for the Gear attack on both metrics, while the multiframe detector obtains 0.0294% and
0.0704%. Similarly, the performance of both models is similar to Gear attacks when detecting
RPM attacks. Notably, the single‐frame detection model requires mining the characteristics of

TABLE 7 IDS performance comparison with baseline methods

ER (%) FNR (%) P (%) R (%) F1 (%)

DoS

STC‐IDS for single frame 0.02 0.01 99.95 99.99 99.96

STC‐IDS for multiframe 0.01 0.02 99.91 99.97 99.94

3‐LSTM35 0.07 0.22 1.0 99.78 99.88

DCNN36 0.03 0.10 1.0 99.89 99.95

DAE61 – 0.12 91.27 99.88 95.36

OTIDS62 – 26.2 99.90 73.80 84.88

Fuzzy

STC‐IDS for single frame 0.05 0.04 99.97 99.95 99.96

STC‐IDS for multiframe 0.09 0.07 99.90 99.92 99.91

3‐LSTM35 0.84 0.65 99.36 99.16 99.26

DCNN36 0.18 0.35 99.95 99.65 99.80

DAE61 – 3.74 90.05 96.26 93.05

OTIDS62 – 29.79 99.14 70.21 82.20

Gear

STC‐IDS for single frame 0.04 0.03 99.97 99.96 99.97

STC‐IDS for multiframe 0.07 0.03 99.94 99.96 99.95

3‐LSTM35 0.24 0.32 99.75 99.68 99.72

DCNN36 0.05 0.11 99.99 99.89 99.94

DAE61 – 18.2 94.63 81.80 87.75

OTIDS62 – 28.35 99.83 71.65 83.42

RPM

STC‐IDS for single frame 0.04 0.03 99.98 99.96 99.97

STC‐IDS for multiframe 0.07 0.03 99.95 99.96 99.96

3‐LSTM35 0.13 0.30 1 99.71 99.85

DCNN36 0.03 0.05 99.99 99.94 99.96

DAE61 – 4.27 95.73 95.73 92.10

OTIDS62 – 28.32 99.81 71.68 83.43

Abbreviations: DAE, deep autoencoder; DCNN, deep convolutional neural network; DoS, denial of service; ER, error rate; FNR,
false negative rate; IDS, intrusion detection system; LSTM, long short‐term memory; RPM, revolutions per minute; STC,
spatial–temporal correlation.
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different CAN packets, thus exhibiting fluctuations in FNR and ER values that are greater than
the multiframe model. Despite the multiframe model with better detection efficiency, it has a
higher false‐alarm rate than the former.

To reflect the advantages of our model, Table 7 lists the detection performance of STC‐IDS
when compared with those of the other machine‐learning techniques, where the highest
performance values are highlighted in bold, and “–” only means that the scheme has not been
tested on this metric. The results indicate clearly that the STC‐IDS model outperforms the
previous methods on all data sets. The FNR and ER are significantly reduced. It can be seen
that the model captures spatial–temporal details of network traffic remarkably well and
enhances the anomaly detection ability satisfactorily.

Evidently, we can observe that the STC‐IDS for the single‐frame model achieves a stable
precision (99.97%), a higher recall (99.96%), and an outstanding F1 score (99.96%) on average as
compared with a threshold (offset ratio and time interval based intrusion detection system
[OTIDS]), classification (deep convolutional neural network [DCNN]), prediction (3‐LSTM),
and clustering (deep autoencoder [DAE])‐based models. In contrast, the performance solely
decreases by an average of 0.04% precision, 0.01% recall, and 0.03% in the F1 score while
maintaining efficiency in the multiframe model.

The 3‐LSTM scheme shows high accuracy and unstable recall because of the unconsidered
spatial correlation, resulting in a low F1 score and a large gap between FNR and ER with our
scheme and DCNN. DCNN is currently one of the best models for in‐vehicle ID, but the
stacking of convolutions is ineffective in capturing the temporal relationships of the inputs. As
a result, the single‐frame model reduces the FNR and ER by 90% and 33% over the DCNN
scheme for DoS attacks, while the multiframe model reduces the FNR by 80% and the ER by
66%. More notably, for complex fuzzy attacks, only 0.04% FNR and 0.05% ER are achieved on
the single‐frame model. In addition, the FNR is slightly improved on the Gear and RPM data
set. Meanwhile, the ER gets approximate performance compared with the DCNN model.

Compared with the DAE model with a lack of labeling constraints, the proposed model has
larger improvements in detection performance, while DAE only reaches 95.36% in F1 score on
DoS attacks, and obtains lower performance on other attacks. Similarly, the OTIDS exhibited a
high accuracy rate and extremely low recall, resulting in an FNR of over 25%, reflecting a
relatively low F1 score. Thus, the robust STC feature demonstrates sufficient benefits in terms
of improving detection performance and reducing the false‐alarm rate.

5.4 | Time cost in real vehicle

This study first implemented single‐frame detection in terms of security considerations.
Although the performance is improved over previous algorithms, the efficiency is not
guaranteed. Besides, time and resources are the major limitations to applying DL models to
real‐world vehicle IDS. Therefore, STC‐IDS based on multiframes also was proposed.
Obviously, significant improvements were made in terms of model convergence time as
shown in Section 5.2. To test the efficiency of the proposed model a resource‐constrained
IVN, the model was tested on an in‐vehicle class device the NVIDIA Jetson AGX Xavier.
Note that only 4 GB of video memory was allocated for testing. The CAN Test software
injected the attack traffic by connecting to the OBD‐II port, as shown in Figure 12.

In Figure 13, we present that the proposed model has a lower time (in milliseconds) cost on
anomaly detection in the case of different batches compared with previous algorithms. The
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FIGURE 12 To illustrate the testing experiment environment. CAN, controller area network; OBD‐II;
On‐Board Diagnostics II [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Testing time of proposed models on different batches for each message compared with other
algorithms. CAN, controller area network; DCNN, deep convolutional neural network; IDS, intrusion detection
system; LSTM, long short‐term memory; MTH‐IDS, multitiered hybrid intrusion detection system; STC,
spatial–temporal correlation. [Color figure can be viewed at wileyonlinelibrary.com]
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average detection time for the single‐frame model remains under 0.7 ms. Although small‐batch
requires the highest time cost, the detection time is decreased based on the increasingly batch.
For example, 256 batch shows 0.54ms time cost, which is superior to DCNN36 and multitiered
hybrid intrusion detection system (MTH‐IDS).33 Moreover, this truly indicates that the model is
constantly learning as it reasoned, thus making it easier to catch malicious features later on.
However, it can be estimated that the model can detect 1851 messages in 1 s at the fastest
detection time cost, while CAN frames transmit approximately 2000 messages in 1 s. One
limitation of this method is that they do not usually satisfy real‐time detection.

To overcome this limitation, the multiframe model presents prominent advantages that just
need the average time cost of 0.09, 0.09, and 0.074 ms for three batches, respectively. Compared
testing time of the previous models as listed in Figure 13, the proposed model not only presents
outstanding performance, but also improves about five times in terms of efficiency. This means
that the model can infer about five times the number of CAN transmission messages in 1 s.
Hence, the proposed model has the feasibility for real‐time detection. Unlike the DCNN36

model, a crucial phenomenon is that the proposed model does not depend on batch size. The
same result reflects in the 3‐LSTM model35 and MTH‐IDS.33 But even so, we also suggest a
suitable batch size needs to be determined, as large batches may delay anomaly alert.

5.5 | Discussion and limitations

The study presents two enhanced spatial–temporal features analyzing IDS for detecting
single CAN messages and consecutive CAN frames based on open injection attack data sets.
Experiments indicate that the single‐frame model exhibits good detection performance.
Similarly, the STC‐IDS for multiframe improves efficiency while ensuring performance.

Although the detection efficiency of the single‐frame model is right limited, we believe that
the model will be suitable for real‐time detection when using higher‐performance computing
devices. In fact, it is necessary to track unauthorized ECUs in conjunction with CAN ID
indexing in further in‐vehicle security development based on single‐frame detection. It is worth
noting that the time‐cost detection of proposed methods is based on in‐vehicle edge computing
and autonomous driving platform from our research group. Although it has satisfied the
requirement for real‐time ID when in a real environment, it has some impact when all tasks are
performed simultaneously. Hence, more research still needs to develop in terms of practical
implementation.

Clearly, the spatial–temporal feature modeling in this study is based on observing the CAN ID
domain, data field, and communication protocol of the specific brand vehicles. The generality
consequence of the proposed model is demonstrated due to the fixed time‐interval, sender and
receiver, despite different vehicle companies making distinct communication protocols. In other
words, model transfer only needs to be retrained on the new brand vehicle, which also can extract
valuable spatial–temporal features, and obtains excellent detection performance.

Moreover, the division of CAN ID in the scheme is limited to public data sets. To accommodate
more realistic in‐vehicle messages, the division should be completed in practice by considering both
standard frames (11 bits) and extended frames (29 bits). However, it is straightforward only to
modify the dimensionality of the input for the proposed model. Most importantly, the model has a
fundamental limitation in terms of detecting unlearned types of attacks as it is based on supervised
learning. To address this challenge, more research is needed on unknown attack detection using
models with generative functions, such as adversarial training or autoencoder.

CHENG ET AL. | 9557

 1098111x, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.23012 by South U

niversity O
f Science, W

iley O
nline L

ibrary on [10/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 | CONCLUSIONS

This study focuses on learning the temporal and spatial characteristics of IVN traffic to
establish enhanced STC features, and then build an automotive ID model. The proposed model
is implemented based on the encode‐detection architecture. The encoding layer is constructed
as a parallel network in both temporal and spatial terms based on LSTM and CNN. The
introduction of A‐LSTM and A‐Conv2D helps the model uncover important relationships
between keyword node variation and temporal order. STC features are fed into the detection
layer to complete anomaly detection.

Both models achieve optimal hyperparameter selection with BO, reducing the number of
iterations and elevating accuracy. Compared with previous schemes, our model achieves a
better performance on open source data set, that is, DoS, Fuzzy, Gear, and RPM, especially in
the FNR and ER metrics.

Although this study achieves security protection of the CAN bus, there is still much room
for improvement, especially unknown attack detection. In future work, we will consider how to
express realistic unknown attack messages, improving model robustness and generalization
capabilities. Data annotation also is a tedious task, but unsupervised algorithms are one of the
solutions, which still need continuous research to improve performance.
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