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Abstract

Existing malware analysis platforms leave detectable fin-
gerprints like uncommon string properties in QEMU,
signatures in Android Java virtual machine, and arti-
facts in Linux kernel profiles. Since these fingerprints
provide the malware a chance to split its behavior de-
pending on whether the analysis system is present or
not, existing analysis systems are not sufficient to ana-
lyze the sophisticated malware. In this paper, we pro-
pose NINJA, a transparent malware analysis framework
on ARM platform with low artifacts. NINJA leverages a
hardware-assisted isolated execution environment Trust-
Zone to transparently trace and debug a target applica-
tion with the help of Performance Monitor Unit and Em-
bedded Trace Macrocell. NINJA does not modify system
software and is OS-agnostic on ARM platform. We im-
plement a prototype of NINJA (i.e., tracing and debug-
ging subsystems), and the experiment results show that
NINJA is efficient and transparent for malware analysis.

1 Introduction

Malware on the mobile platform exhibits an explosive
growth in recent years. To solve the threat of the mali-
cious applications, a variety of tools have been proposed
for malware detection and analysis [18, 22, 37, 44, 45,
52, 55, 56]. However, sophisticated malware, which is
also known as evasive malware, is able to evade the anal-
ysis by collecting the artifacts of the execution environ-
ment or the analysis tool, and refuses to perform any ma-
licious behavior if an analysis system is detected.

As most of the existing mobile malware analysis sys-
tems [18, 45, 52] are based on emulation or virtual-
ization technology, a series of anti-emulation and anti-
virtualization techniques [29, 36, 48] have been devel-
oped to challenge them. These techniques show that
the emulation or virtualization can be easily detected
by footprints like string properties, absence of particu-

lar hardware components, and performance slowdown.
The hardware-assisted virtualization technique [17, 50]
can improve the transparency of the virtualization-based
systems; however, this approach still leaves artifacts on
basic instruction execution semantics that could be easily
detected by malware [39].

To address this challenge, researchers study the mal-
ware on bare-metal devices via modifying the system
software [22, 37, 44, 55] or leveraging OS APIs [15, 56]
to monitor the runtime behavior of malware. Although
bare-metal based approaches eliminate the detection of
the emulator or hypervisor, the artifacts introduced by the
analysis tool itself are still detectable by malware. More-
over, privileged malware can even manipulate the anal-
ysis tool since they run in the same environment. How
to build a transparent mobile malware analysis system is
still a challenging problem.

This transparency problem has been well studied in
the traditional x86 architecture, and similar milestones
have been made from emulation-based analysis sys-
tems [2, 40] to hardware-assisted virtualization analysis
systems [19, 20, 32], and then to bare-metal analysis sys-
tems [30, 31, 41, 54]. However, this problem still chal-
lenges the state-of-the-art malware analysis systems.

We consider that an analysis system consists of an En-
vironment (e.g., operating system, emulator, hypervisor,
or sandbox) and an Analyzer (e.g., instruction analyzer,
API tracer, or application debugger). The Environment
provides the Analyzer with the access to the states of the
target malware, and the Analyzer is responsible for the
further analysis of the states. Consider an analysis sys-
tem that leverages the emulator to record the system call
sequence and sends the sequence to a remote server for
further analysis. In this system, the Environment is the
emulator, which provides access to the system call se-
quence, and both the system call recorder and the remote
server belong to the Analyzer. Evasive malware can de-
tect this analysis system via anti-emulation techniques
and evade the analysis.



To build a transparent analysis system, we propose
three requirements. Firstly, the Environment must be iso-
lated. Otherwise, the Environment itself can be manip-
ulated by the malware. Secondly, the Environment ex-
ists on an off-the-shelf (OTS) bare-metal platform with-
out modifying the software or hardware (e.g., emulation
and virtualization are not). Although studying the anti-
emulation and anti-virtualization techniques [29, 36, 39,
48] helps us to build a more transparent system by fix-
ing the imperfections of the Environment, we consider
perfect emulation or virtualization is impractical due to
the complexity of the software. Instead, if the Environ-
ment already exists in the OTS bare-metal platform, mal-
ware cannot detect the analysis system by the presence of
the Environment. Finally, the Analyzer should not leave
any detectable footprints (e.g., files, memory, registers,
or code) to the outside of the Environment. An Analyzer
violating this requirement can be detected.

In light of the three requirements, we present NINJA 1,
a transparent malware analysis framework on ARM plat-
form based on hardware features including TrustZone
technology, Performance Monitoring Unit (PMU), and
Embedded Trace Macrocell (ETM). We implement a
prototype of NINJA that embodies a trace subsystem
with different tracing granularities and a debug subsys-
tem with a GDB-like debugging protocol on ARM Juno
development board. Additionally, hardware-based traps
and memory protection are leveraged to keep the use of
system registers transparent to the target application. The
experimental results show that our framework can trans-
parently monitor and analyze the behavior of the mal-
ware samples. Moreover, NINJA introduces reasonable
overhead. We evaluate the performance of the trace sub-
system with several popular benchmarks, and the result
shows that the overheads of the instruction trace and sys-
tem call trace are less than 1% and the Android API trace
introduces 4 to 154 times slowdown.

The main contributions of this work include:

• We present a hardware-assisted analysis framework,
named NINJA, on ARM platform with low artifacts.
It does not rely on emulation, virtualization, or sys-
tem software, and is OS-agnostic. NINJA resides
in a hardware isolation execution environment, and
thus is transparent to the analyzed malware.

• NINJA eliminates its footprints by novel techniques
including hardware traps, memory mapping inter-
ception, and timer adjusting. The evaluation result
demonstrates the effectiveness of the mitigation and
NINJA achieves a high level of transparency. More-
over, we evaluate the instruction-skid problem and
show that it has little influence on our system.

1A NINJA in feudal Japan has invisibility and transparency ability
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Figure 1: The ARMv8 and ARMv7 Architectures.

• We implement debugging and tracing subsystems
with a variety of program analysis functionalities.
NINJA is capable of studying kernel- or hypervisor-
level malware. The tracing subsystem exhibits a low
performance overhead and the instruction and sys-
tem call tracing is immune to timing attacks.

2 Background

2.1 TrustZone and Trusted Firmware

ARM TrustZone technology [12] introduces a hardware-
assisted security concept that divides the execution envi-
ronment into two isolated domains, i.e., secure domain
and non-secure domain. Due to security concerns, the
secure domain could access the resources (e.g., mem-
ory and registers) of the non-secure domain, but not vice
versa. In ARMv8 architecture, the only way to switch
from normal domain to secure domain is to trigger a
secure exception [8], and the exception return instruc-
tion eret is used to switch back to the normal domain
from the secure domain after the exception is handled.

Figure 1 shows the difference between the ARMv8
and the ARMv7 architectures. In the new architecture,
ARM removes the execution modes in ARMv7 and re-
names the Privilege Level (PL) to Exception Level (EL).
The term EL indicates the level where an exception can
be handled and all ELs except EL0 can handle excep-
tions. Any exception occurs in a certain level could only
be handled in the same level or a higher level.

The names of the system registers in 64-bit ARMv8
architecture contain a suffix that indicating the lowest
EL at which the register can be accessed. For example,
the name of the PMEVCNTR EL0 register indicates that the
lowest EL to access this register is EL0. Similarly, the
registers with suffix EL3 can only be accessed in EL3.

ARM Trusted Firmware [7] (ATF) is an official im-
plementation of secure domain provided by ARM, and
it supports an array of hardware platforms and emula-
tors. While entering the secure domain, the ATF saves
the context of the normal domain and dispatches the se-
cure exception to the corresponding exception handler.
After the handler finishes the handling process, the ATF



restores the context of the normal domain and switches
back with eret instruction. ATF also provides a trusted
boot path by authenticating the firmware image with sev-
eral approaches like signatures and public keys.

2.2 PMU and ETM
The Performance Monitors Unit (PMU) [8] is a fea-
ture widely implemented in both x86 and ARM architec-
tures [42], which leverages a set of performance counter
registers to calculate CPU events. Each architecture
specifies a list of common events by event numbers,
and different CPUs may also maintain additional event
numbers. A Performance Monitor Interrupt (PMI) can
be triggered while a performance counter register over-
flows. Note that the PMU is a non-invasive debug feature
that does not affect the performance of the CPU.

The Embedded Trace Macrocell (ETM) [11] is another
non-invasive debug component in ARM architecture. It
traces instructions and data by monitoring instruction
and data buses with low performance impact. Actually,
ARM expects that ETM has no effect on the functional
performance of the processor. The ETM generates an
element for executed signpost instructions that could be
further used to reconstruct all the executed instructions.
The generated elements are encoded into a trace stream
and sent to a pre-allocated buffer on the chip.

According to Futuremark [23], 21 of the most popu-
lar 50 smartphones and tablets are equipped with ARM
Cortex-A5x or Cortex-A7x series processors, in which
the PMU and ETM components are included.

3 Related Work

3.1 Transparent Malware Analysis on x86
Ether [20] leverages hardware virtualization to build a
malware analysis system and achieves high transparency.
Spider [19] is also based on hardware virtualization, and
it focuses on both applicability and transparency while
using memory page instrument to gain higher efficiency.
Since the hardware virtualization has transparency is-
sues, these systems are naturally not transparent. LO-
PHI [41] leverages additional hardware sensors to moni-
tor the disk operation and periodically poll memory snap-
shots, and it achieves a higher transparency at the cost of
incomplete view of system states.

MalT [54] increases the transparency by involving
System Manage Mode (SMM), a special CPU mode in
x86 architecture. It leverages PMU to monitor the pro-
gram execution and switch into SMM for analysis. Com-
paring with MalT, NINJA improves in the following as-
pects: 1) The PMU registers on MalT are accessible by
privileged malware, which breaks the transparency by

checking the values of these registers. By leveraging
TrustZone technology, NINJA configures needed PMU
registers as secure ones so that even the privileged mal-
ware in the normal domain cannot access them. 2) MalT
is built on SMM. However, SMM is not designed for se-
curity purpose such as transparent debugging (originally
for power management); frequent CPU mode switching
introduces a high performance overhead (12 µs is re-
quired for a SMM switch [54]). NINJA is based on Trust-
Zone, a dedicated security extension on ARM. The do-
main switching only needs 0.34 µs (see Appendix B). 3)
Besides a debugging system, NINJA develops a transpar-
ent tracing system with existing hardware. The instruc-
tion and system call tracing introduce negligible over-
head, which is immune to timing attacks while MalT suf-
fers from external timing attack.

BareCloud [31] and MalGene [30] focus on detect-
ing evasive malware by executing malware in different
environments and comparing their behavior. There are
limitations to this approach. Firstly, it fails to transpar-
ently fetch the malware runtime behavior (e.g., system
calls and modifications to memory/registers) on a bare-
metal environment. Secondly, it assumes that the eva-
sive malware shows the malicious behavior in at least
one of the analysis platforms. However, sophisticated
malware may be able to detect all the analysis platforms
and refuse to exhibit any malicious behavior during the
analysis. Lastly, after these tools identify the evasive
malware from the large-scale malware samples, they still
need a transparent malware analysis tool which is able to
analyze these evasive samples transparently. NINJA pro-
vides a transparent framework to study the evasive mal-
ware and plays a complementary role for these systems.

3.2 Dynamic Analysis Tools on ARM

Emulation-based systems. DroidScope [52] rebuilds
the semantic information of both the Android OS and
the Dalvik virtual machine based on QEMU. Copper-
Droid [45] is a VMI-based analysis tool that automati-
cally reconstructs the behavior of Android malware in-
cluding inter-process communication (IPC) and remote
procedure call interaction. DroidScibe [18] uses Cop-
perDroid [45] to collect behavior profiles of Android
malware, and automatically classifies them into differ-
ent families. Since the emulator leaves footprints, these
systems are natural not transparent.
Hardware virtualization. Xen on ARM [50] mi-
grates the hardware virtualization based hypervisor Xen
to ARM architecture and makes the analysis based
on hardware virtualization feasible on mobile devices.
KVM/ARM [17] uses standard Linux components to im-
prove the performance of the hypervisor. Although the
hardware virtualization based solution is considered to



be more transparent than the emulation or traditional vir-
tualization based solution, it still leaves some detectable
footprints on CPU semantics while executing specific in-
structions [39].
Bare-metal systems. TaintDroid [22] is a system-wide
information flow tracking tool. It provides variable-level,
message-level, method-level, and file-level taint propa-
gation by modifying the original Android framework.
TaintART [44] extends the idea of TaintDroid on the
most recent Android Java virtual machine Android Run-
time (ART). VetDroid [55] reconstructs the malicious be-
havior of the malware based on permission usage, and
it is applicable to taint analysis. DroidTrace [56] uses
ptrace to monitor the dynamic loading code on both
Java and native code level. BareDroid [34] provides a
quick restore mechanism that makes the bare-metal anal-
ysis of Android applications feasible at scale. Although
these tools attempt to analyze the target on real-world
devices to improve transparency, the modification to the
Android framework leaves some memory footprints or
code signatures, and the ptrace-based approaches can
be detected by simply check the /proc/self/status

file. Moreover, these systems are vulnerable to privileged
malware.

3.3 TrustZone-related Systems
TZ-RKP [13] runs in the secure domain and protects the
rich OS kernel by event-driven monitoring. Sprobes [51]
provides an instrumentation mechanism to introspect the
rich OS from the secure domain, and guarantees the ker-
nel code integrity. SeCReT [28] is a framework that en-
ables a secure communication channel between the nor-
mal domain and the secure domain, and provides a trust
execution environment. Brasser et al. [14] use TrustZone
to analyze and regulate guest devices in a restricted host
spaces via remote memory operation to avoid misusage
of sensors and peripherals. C-FLAT [1] fights against
control-flow hijacking via runtime control-flow verifica-
tion in TrustZone. TrustShadow [25] shields the execu-
tion of an unmodified application from a compromised
operating system by building a lightweight runtime sys-
tem in the ARM TrustZone secure world. The runtime
system forwards the requests of system services to the
commodity operating systems in the normal world and
verifies the returns. Unlike previous systems, NINJA
leverage TrustZone to transparently debug and analyze
the ARM applications and malware.

4 System Architecture

Figure 2 shows the architecture of NINJA. The NINJA
consists of a target executing platform and a remote de-
bugging client. In the target executing platform, Trust-
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Figure 2: Architecture of NINJA.

Zone provides hardware-based isolation between the
normal and secure domains while the rich OS (e.g.,
Linux or Android) runs in the normal domain and NINJA
runs in the secure domain. We setup a customized excep-
tion handler in EL3 to handle asynchronous exceptions
(i.e., interrupts) of our interest. NINJA contains a Trace
Subsystem (TS) and a Debug Subsystem (DS). The TS is
designed to transparently trace the execution of a target
application, which does not need any human interaction
during the tracing. This feature is essential for automatic
large-scale analysis. In contrast, the DS relies on human
analysts. In the remote debugging platform, the analysts
send debug commands via a secure serial port and the DS
then response to the commands. During the execution of
an application, we use secure interrupts to switch into the
secure domain and then resume to the normal domain by
executing the exception return instruction eret.

4.1 Reliable Domain Switch
Normally, the smc instruction is used to trigger a domain
switch by signaling a Secure Monitor Call (SMC) excep-
tion which is handled in EL3. However, as the execution
of the smc instruction may be blocked by privileged mal-
ware, this software-based switch is not reliable.

Another solution is to trigger a secure interrupt which
is considered as an asynchronous exception in EL3.
ARM Generic Interrupt Controller (GIC) [5] partitions
all interrupts into secure group and non-secure group,
and each interrupt is configured to be either secure or
non-secure. Moreover, the GIC Security Extensions en-
sures that the normal domain cannot access the config-
uration of a secure interrupt. Regarding to NINJA, we
configure PMI to be a secure interrupt so that an over-
flow of the PMU registers leads to a switch to the secure
domain. To increase the flexibility, we also use simi-
lar technology mentioned in [43] to configure the Gen-
eral Purpose Input/Output (GPIO) buttons as the source
of secure Non-Maskable Interrupt (NMI) to trigger the
switch. The switch from secure domain to normal do-
main is achieved by executing the exception return in-
struction eret.



4.2 The Trace Subsystem

The Trace Subsystem (TS) provides the analyst the abil-
ity to trace the execution of the target application in dif-
ferent granularities during automatic analysis including
instruction tracing, system call tracing, and Android API
tracing. We achieve the instruction and system call trac-
ing via hardware component ETM, and the Android API
tracing with help of PMU registers.

By default, we use the GPIO button as the trigger of
secure NMIs. Once the button is pressed, a secure NMI
request is signaled to the GIC, and GIC routes this NMI
to EL3. NINJA toggles the enable status of ETM after
receiving this interrupt and outputs the tracing result if
needed. Additionally, the PMU registers are involved
during the Android API trace. Note that the NMI of
GPIO buttons can be replaced by any system events that
trigger an interrupt (e.g., system calls, network events,
clock events, and etc.), and these events can be used to
indicate the start or end of the trace in different usage
scenarios.

Another advanced feature of ETM is that PMU events
can also be configured as an external input source. In
light of this, we specify different granularities of the trac-
ing. For example, we trace all the system calls by con-
figure the ETM to use the signal of PMU event EXC SVC

as the external input.

4.3 The Debug Subsystem

In contrast to the TS, the Debug Subsystem (DS) is de-
signed for manual analysis. It establishes a secure chan-
nel between the target executing platform and the remote
debugging platform, and provides a user interface for hu-
man analysts to introspect the execution status of the tar-
get application.

To interrupt the execution of the target, we configure
the PMI to be secure and adjust the value of the PMU
counter registers to trigger an overflow at a desired point.
NINJA receives the secure interrupt after a PMU counter
overflows and pauses the execution of the target. A hu-
man analyst then issues debugging commands via the se-
cure serial port and introspects the current status of the
target following our GDB-like debugging protocol. To
ensure the PMI will be triggered again, the DS sets de-
sirable values to the PMU registers before exiting the se-
cure domain.

Moreover, similar to the TS, we specify the granu-
larity of the debugging by monitoring different PMU
events. For example, if we choose the event INST R-

ETIRED which occurs after an instruction is retired, the
execution of the target application is paused after each
instruction is executed. If the event EXC SVC is chosen,
the DS takes control of the system after each system call.

5 Design and Implementation

We implement NINJA on a 64-bit ARMv8 Juno r1 board.
There are two ARM Cortex-A57 cores and four ARM
Cortex-A53 cores on the board, and all of them include
the support for PMU, ETM, and TrustZone. Based on the
ATF and Linaro’s deliverables on Android 5.1.1 for Juno,
we build a customized firmware for the board. Note that
NINJA is compatible with commercial mobile devices
because it relies on existing deployed hardware features.

5.1 Bridge the Semantic Gap
As with the VMI-based [27] and TEE-based [54] sys-
tems, bridging the semantic gap is an essential step for
NINJA to conduct the analysis. In particular, we face two
layers of semantic gaps in our system.

5.1.1 Gap between Normal and Secure Domains

In the DS, NINJA uses PMI to trigger a trap to EL3. How-
ever, the PMU counts the instructions executed in the
CPU disregarding to the current running process. That
means the instruction which triggers the PMI may belong
to another application. Thus, we first need to identify if
the current running process is the target. Since NINJA is
implemented in the secure domain, it cannot understand
the semantic information of the normal domain, and we
have to fill the semantic gap to learn the current running
process in the OS.

In Linux, each process is represented by an instance
of thread info data structure, and the one for the
current running process could be obtained by SP &
∼(THREAD SIZE - 1) , where SP indicates the current
stack pointer and THREAD SIZE represents the size of
the stack. Next, we can fetch the task struct, which
maintains the process information (like pid, name, and
memory layout), from the thread info. Then, the tar-
get process can be identified by the pid or process name.

5.1.2 Gap in Android Java Virtual Machine

Android maintains a Java virtual machine to interpret
Java bytecode, and we need to figure out the current exe-
cuting Java method and bytecode during the Android API
tracing and bytecode stepping. DroidScope [52] fills the
semantic gaps in the Dalvik to understand the current sta-
tus of the VM. However, as a result of Android upgrades,
Dalvik is no longer available in recent Android versions,
and the approach in DroidScope is not applicable for us.

By manually analyzing the source code of
ART, we learn that the bytecode interpreter uses
ExecuteGotoImpl or ExecuteSwitchImpl function
to execute the bytecode. The approaches we used to fill
the semantic gap in these two functions are similar, and
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we use function ExecuteGotoImpl as an example to
explain our approach. In Android, the bytecode of a Java
method is organized as a 16-bit array, and ART passes
the bytecode array to the function ExecuteGotoImpl

together with the current execution status such as the
current thread, caller and callee methods, and the call
frame stack that stores the call stack and parameters.
Then, the function ExecuteGotoImpl interprets the
bytecode in the array following the control flows, and a
local variable dex pc indicates the index of the current
interpreting bytecode in the array. By manual checking
the decompiled result of the function, we find that the
pointer to the bytecode array is stored in register X27

while variable dex pc is kept by register X21, and the
call frame stack is maintained in register X19. Figure 3
shows the semantics in the function ExecuteGotoImpl.
By combining registers X21 and X27, we can locate the
current executing bytecode. Moreover, a single frame
in the call frame stack is represented by an instance of
StackFrame with the variable link pointing to the
previous frame. The variable method indicates the
current executing Java method, which is represented
by an instance of ArtMethod. Next, we fetch the
declaring class of the Java method following the pointer
declaring class . The pointer dex cache in the
declaring class points to an instance of DexCache which
is used to maintain a cache for the DEX file, and the
variable dex file in the DexCache finally points to
the instance of DexFile, which contains all information
of a DEX file. Detail description like the name of the
method can be fetched via the index of the method (i.e.,
dex method index ) in the method array maintained
by the DexFile. Note that both ExecuteGotoImpl

and ExecuteSwitchImpl functions have four different

template implementations in ART, and our approach is
applicable to all of them.

5.2 Secure Interrupts

In GIC, each interrupt is assigned to Group 0 (secure in-
terrupts) or Group 1 (non-secure interrupts) by a group
of 32-bit GICD IGROUPR registers. Each bit in each
GICD IGROUPR register represents the group information
of a single interrupt, and value 0 indicates Group 0 while
value 1 means Group 1. For a given interrupt ID n,
the index of the corresponding GICD IGROUPR register
is given by n / 32, and the corresponding bit in the reg-
ister is n mod 32. Moreover, the GIC maintains a target
process list in GICD ITARGETSR registers for each inter-
rupt. By default, the ATF configures the secure interrupts
to be handled in Cortex-A57 core 0.

As mentioned in Section 4.1, NINJA uses secure PMI
and NMI to trigger a reliable switch. As the secure inter-
rupts are handled in Cortex-A57 core 0, we run the tar-
get application on the same core to reduce the overhead
of the communication between cores. In Juno board,
the interrupt ID for PMI in Cortex-A57 core 0 is 34.
Thus, we clear the bit 2 of the register GICD IGROUPR1

(34 mod 32 = 2,34/32 = 1) to mark the interrupt 34 as
secure. Similarly, we configure the interrupt 195, which
is triggered by pressing a GPIO button, to be secure by
clearing the bit 3 of the register GICD IGROUPR6.

5.3 The Trace Subsystem

5.3.1 Instruction Tracing

NINJA uses ETM embedded in the CPU to trace the exe-
cuted instructions. Figure 4 shows the ETM and related
components in Juno board. The funnels shown in the
figure are used to filter the output of ETM, and each of
them is controlled by a group of CoreSight Trace Funnel
(CSTF) registers [9]. The filtered result is then output
to Embedded Trace FIFO (ETF) which is controlled by
Trace Memory Controller (TMC) registers [10].

In our case, as we only need the trace result from the
core 0 in the Cortex-A57 cluster, we set the EnS0 bit in
CSTF Control Register of funnel 0 and funnel 2, and
clear other slave bits. To enable the ETF, we set the
TraceCaptEn bit of the TMC CTL register.

The ETM is controlled by a group of trace regis-
ters. As the target application is always executed in
non-secure EL0 or non-secure EL1, we make the ETM
only trace these states by setting all EXLEVEL S bits and
clearing all EXLEVEL NS bits of the TRCVICTLR register.
Then, NINJA sets the EN bit of TRCPRGCTLR register to
start the instruction trace. In regard to stop the trace, we
first clear the EN bit of TRCPRGCTLR register to disable
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ETM and then set the StopOnFl bit and the FlushMan

bits of FFCR register in the TMC registers to stop the
ETF. To read the trace result, we keep reading from RRD

register until 0xFFFFFFFF is fetched. Note that the trace
result is an encoded trace stream, and we use an open
source analyzer ptm2human [26] to convert the stream to
a readable format.

5.3.2 System Call Tracing

The system call of Linux in ARM platforms is achieved
by supervisor call instruction svc, and an immediate
value following the svc instruction indicates the corre-
sponding system call number. Since the ETM can be
configured to trace the PMU event EXC SVC, which oc-
curs right after the execution of a svc instruction, we
trace the system calls via tracing this event in ETM.

As mentioned in Section 4.2, we can configure the
ETM to trace PMU events during the instruction trace.
The TRCEXTINSELR register is used to trace at most four
external input source, and we configure one of them
to trace the EXC SVC event. In Cortex-A57, the event
number of the EXC SVC event is 0x60, so we set the
SEL0 bits of the TRCEXTINSELR register to be 0x60.
Also, the SELECT bits of the second trace resource se-
lection control register TRCRSCTLR2 (TRCRSCTLR0 and
TRCRSCTLR1 are reserved) is configured to 0 to select
the external input 0 as tracing resource 2. Next, we con-
figure the EVENT0 bit of TRCEVENTCTL0R register to 2 to
select the resource 2 as event 0. Finally, the INSTEN bit
of TRCEVENTCTL1R register is set to 0x1 to enable event
0. Note that the X bit of PMU register PMCR EL0 should
also be set to export the events to ETM. After the config-
uration, the ETM can be used to trace system calls, and
the configuration to start and stop the trace is similar to
the one in Section 5.3.1.

5.3.3 Android API Tracing

Unlike the instruction trace and system call trace, we
cannot use ETM to directly trace the Android APIs
as the existence of the semantic gap. As mentioned
in Section 5.1.2, each Java method is interpreter by
ExecuteGotoImpl or ExecuteSwitchImpl function,

and ART jumps to these functions by a branch instruction
bl. Since a PMU event BR RETIRED is fired after exe-
cution of a branch instruction, we use PMU to trace the
BR RETIRED event and reconstruct the semantic informa-
tion following the approach described in Section 5.1.2 if
these functions are invoked.

There exist six PMU counters for each processor on
Juno board, and we randomly select the last one to be
used for the Android API trace and the DS. Firstly, the
E bit of PMCR EL0 register is set to enable the PMU.
Then, both PMCNTENSET EL0 and PMINTENSET EL1 reg-
isters are set to 0x20 to enable the counter 6 and
the overflow interrupt of the counter 6. Next, we set
PMEVTYPER5 EL0 register to 0x80000021 to make the
counter 6 count the BR RETIRED event in non-secure
EL0. Finally, the counter PMEVCNTR5 EL0 is set to its
maximum value 0xFFFFFFFF. With this configuration,
a secure PMI is routed to EL3 after the execution of
the next branch instruction. In the interrupt handler, the
ELR EL3 register, which is identical to the PC of the nor-
mal domain, is examined to identify whether the execu-
tion of normal domain encounters ExecuteGotoImpl or
ExecuteSwitchImpl function. If true, we fill the se-
mantic gap and fetch the information about the current
executing Java method. By the declaring class of the
method, we differentiate the Android APIs from the de-
veloper defined methods. Before returning to the normal
domain, we reset the performance counter to its maxi-
mum value to make sure the next execution of a branch
instruction leads to an overflow.

5.4 The Debug Subsystem

Debugging is another essential approach to learn the be-
havior of an application. NINJA leverages a secure serial
port to connect the board to an external debugging client.
There exists two serial port (i.e., UART0 and UART1) in
Juno board, and the ATF uses UART0 as the debugging
input/output of both normal domain and secure domain.
To build a secure debugging bridge, NINJA uses UART1
as the debugging channel and marks it as a secure de-
vice by configuring NIC-400 [3]. Alternatively, we can
use a USB cable for this purpose. In the DS, an ana-
lyst pauses the execution of the target application by the
secure NMI or predefined breakpoints and send debug-
ging commands to the board via the secure serial port.
NINJA processes the commands and outputs the response
to the serial port with a user-friendly format. The table in
Appendix A shows the supported debugging commands.
The information about symbols in both bytecode and ma-
chine code are not supported at this moment, and we con-
sider it as our future work.



5.4.1 Single-instruction Stepping

The ARMv8 architecture provides instruction stepping
support for the debuggers by the SS bit of MDSCR EL1

register. Once this bit is set, the CPU generates a soft-
ware step exception after each instruction is executed,
and the highest EL that this exception can be routed is
EL2. However, this approach has two fundamental draw-
backs: 1) the EL2 is normally prepared for the hard-
ware virtualization systems, which does not satisfy our
transparency requirements. 2) The instruction stepping
changes the value of PSTATE, which is accessible from
EL1. Thus, we cannot use the software step exception for
the instruction stepping. Another approach is to modify
the target application’s code to generate a SMC excep-
tion after each instruction. Nonetheless, the modification
brings the side effect that the self-checking malware may
be aware of it.

The PMU event INST RETIRED is fired after the exe-
cution of each instruction, and we use this event to im-
plement instruction stepping by using similar approach
mentioned in Section 5.3.3. With the configuration,
NINJA pauses the execution of the target after the exe-
cution of each instruction and waits for the debugging
commands.

Moreover, NINJA is capable of stepping Java byte-
code. Recall that the functions ExecuteGotoImpl

and ExecuteSwitchImpl interpret the bytecode in Java
methods. In both functions, a branch instruction is used
to switch to the interpretation code of each Java byte-
code. Thus, we use BR RETIRED event to trace the
branch instructions and firstly ensure the pc of normal
domain is inside the two interpreter functions. Next, we
fill the semantic gap and monitor the value of dex pc. As
the change of dex pc value indicates the change of cur-
rent interpreting bytecode, we pause the system once the
dex pc is changed to achieve Java bytecode stepping.

5.4.2 Breakpoints

In ARMv8 architecture, a breakpoint exception is gen-
erated by either a software breakpoint or a hardware
breakpoint. The execution of brk instruction is consid-
ered as a software breakpoint while the breakpoint con-
trol registers DBGBCR EL1 and breakpoint value registers
DBGBVR EL1 provide support for at most 16 hardware
breakpoints. However, similar to the software step ex-
ception, the breakpoint exception generated in the nor-
mal domain could not be routed to EL3, which breaks the
transparency requirement of NINJA. MalT [54] discusses
another breakpoint implementation that modifies the tar-
get’s code to trigger an interrupt. Due to the transparency
requirement, we avoid this approach to keep our system
transparent against the self-checking malware. Thus, we
implement the breakpoint based on the instruction step-

ping technique discussed above. Once the analyst adds
a breakpoint, NINJA stores its address and enable PMU
to trace the execution of instructions. If the address of
an executing instruction matches the breakpoint, NINJA
pauses the execution and waits for debugging commands.
Otherwise, we return to the normal domain and do not
interrupt the execution of the target.

5.4.3 Memory Read/Write

NINJA supports memory access with both physical and
virtual addresses. The TrustZone technology ensures
that EL3 code can access the physical memory of the
normal domain, so it is straight forward for NINJA to
access memory via physical addresses. Regarding to
memory accesses via virtual addresses, we have to find
the corresponding physical addresses for the virtual ad-
dresses in the normal domain. Instead of manually walk
through the page tables, a series of Address Translation
(AT) instructions help to translate a 64-bit virtual address
to a 48-bit physical address2 considering the translation
stages, ELs and memory attributes. As an example, the
at s12e0r addr instruction performs stage 1 and 2 (if
available) translations as defined for EL0 to the 64-bit
address addr, with permissions as if reading from addr.
The [47:12] bits of the corresponding physical address
are storing in the PA bits of the PAR EL1 register, and
the [11:0] bits of the physical address are identical to the
[11:0] bits of the virtual address addr. After the transla-
tion, NINJA directly manipulates the memory in normal
domain according to the debugging commands.

5.5 Interrupt Instruction Skid
In ARMv8 manual, the interrupts are referred as asyn-
chronous exceptions. Once an interrupt source is trig-
gered, the CPU continues executing the instructions in-
stead of waiting for the interrupt. Figure 5 shows the
interrupt process in Juno board. Assume that an inter-
rupt source is triggered before the MOV instruction is ex-
ecuted. The processor then sends the interrupt request
to the GIC and continues executing the MOV instruction.
The GIC processes the requested interrupt according to
the configuration, and signals the interrupt back to the
processor. Note that it takes GIC some time to finish the
process, so some instructions following the MOV instruc-
tion have been executed when the interrupt arrives the
processor. As shown in Figure 5, the current executing
instruction is the ADD instruction instead of the MOV in-
struction when the interrupt arrives, and the instruction
shadow region between the MOV and ADD instructions is
considered as interrupt instruction skid.

2The ARMv8 architecture does not support more bits in the physical
address at this moment



...
MOV X1, X0

...

...

...
ADD X1, X0, #1

GIC

interrupt 
triggered

send interrupt
request

signal interrupt
instruction skid

Figure 5: Interrupt Instruction Skid.

MRS X0, PMCR_EL0
MOV X1, #31

AND X0, X1, X1 LSR #10
...

...
MOV X0, #0x41013000

exception 
return

trap

Normal Domain Secure domain

Figure 6: Protect the PMCR EL0 Register via Traps.

The skid problem is a well-known problem [42, 49]
and affects NINJA since the current executing instruction
is not the one that triggers the PMI when the PMI ar-
rives the processor. Thus, the DS may not exactly step
the execution of the processor. Although the skid prob-
lem cannot be completely eliminated, the side-effect of
the skid does not affect our system significantly, and we
provide a detailed analysis and evaluation in Section 7.5.

6 Transparency

As NINJA is not based on the emulator or other sand-
boxes, the anti-analysis techniques mentioned in [29, 36,
48] cannot detect the existence of NINJA. Moreover,
other anti-debugging techniques like anti-ptrace [53] do
not work for NINJA since our analysis does not use
ptrace. Nonetheless, NINJA leaves artifacts such as
changes of the registers and the slow down of the system,
which may be detected by the target application. Next,
we discuss the mitigation of these artifacts.

6.1 Footprints Elimination
Since NINJA works in the secure domain, the hardware
prevents the target application from detecting the code
or memory usage of NINJA. Moreover, as the ATF re-
stores all the general purpose registers while entering the
secure domain and resumes them back while returning
to the normal domain, NINJA does not affect the reg-
isters used by the target application as well. However,
as we use ETM and PMU to achieve the debugging and
tracing functions, the modification to the PMU registers
and the ETM registers leaves a detectable footprint. In
ARMv8, the PMU and ETM registers are accessible via
both system-instruction and memory-mapped interfaces.

6.1.1 System-Instruction Interface

The system-instruction interface makes the system regis-
ters readable via MRS instruction and writable via MSR in-

struction. In NINJA, we ensure that the access to the tar-
get system registers via these instructions to be trapped
to EL3. The TPM bit of the MDCR EL3 register and the
TTA bit of the CPTR EL3 register help to trap the access
to PMU and ETM registers to EL3, respectively; then we
achieve the transparency by providing artificial values to
the normal domain. Figure 6 is an example of manipu-
lating the reading to the PMCR EL0 register and returning
the default value of the register. Before the MRS instruc-
tion is executed, a trap is triggered to switch to the secure
domain. NINJA then analyzes the instruction that triggers
the trap and learns that the return value of PMCR EL0 is
stored to the general-purpose register X0. Thus, we put
the default value 0x41013000 to the general-purpose reg-
ister X0 and resume to the normal domain. Note that the
PC register of the normal domain should also be modified
to skip the MRS instruction. We protect both the registers
that we modified (e.g., PMCR EL0, PMCNTENSET EL0)
and the registers modified by the hardware as a result
of our usage (e.g., PMINTENCLR EL1, PMOVSCLR EL0).

6.1.2 Memory Mapped Interface

Each of the PMU or ETM related components occupies
a distinct physical memory region, and the registers of
the component can be accessed via offsets in the region.
Since these memory regions do not locate in the DRAM
(i.e., main memory), the TrustZone Address Space Con-
troller (TZASC) [12], which partitions the DRAM into
secure regions and non-secure regions, cannot protect
them directly. Note that this hardware memory region
is not initialized by the system firmware by default and
the system software such as applications and OSes can-
not access it because the memory region is not mapped
into the virtual memory. However, advanced malware
might remap this physical memory region via functions
like mmap and ioremap. Thus, to further defend against
these attacks, we intercept the suspicious calls to these
functions and redirect the call to return an artificial mem-
ory region.

The memory size for both the PMU and ETM mem-
ory regions is 64k, and we reserve a 128k memory re-
gion on the DRAM to be the artificial PMU and ETM
memory. The ATF for Juno board uses the DRAM re-
gion 0x880000000 to 0x9ffffffff as the memory of the
rich OS and the region 0xa00000000 to 0x1000000000
of the DRAM is not actually initialized. Thus, we
randomly choose the memory region 0xa00040000 to
0xa00060000 to be the region for artificial memory
mapped registers. While the system is booting, we firstly
duplicate the values in the PMU and ETM memory re-
gions into the artificial regions. As the function calls are
achieved by bl instruction, we intercept the call to the
interested functions by using PMU to trigger a PMI on



the execution of branch instructions and compare the pc
of the normal domain with the address of these functions.
Next, we manipulate the call to these functions by mod-
ification to the parameters. Take ioremap function as
an example. The first parameter of the function, which
is stored in the register X0, indicates the target physical
address, and we modify the value stored at the register
to the corresponding address in the artificial memory re-
gion. With this approach, the application never reads
the real value of PMU and ETM registers, and cannot
be aware of NINJA.

6.2 Defending Against Timing Attacks

The target application may use the SoC or external timers
to detect the time elapsed in the secure domain since the
DS affects the performance of the processor and com-
municates with a human analyst. Note that the TS using
ETM does not affect the performance of the processor
and thus is immune to the timing attack.

The ARMv8 architecture defines two types of timer
components, i.e., the memory-mapped timers and the
generic timer registers [8]. Other than these timers, the
Juno board is equipped with an additional Real Time
Clock (RTC) component PL031 [6] and two dual-timer
modules SP804 [4] to measure the time. For each one of
these components, we manipulate its value to make the
time elapsed of NINJA invisible.

Each of the memory-mapped timer components is
mapped to a pre-defined memory region, and all these
memory regions are writable in EL3. Thus, we record
the value of the timer or counter while entering NINJA
and restore it before existing NINJA. The RTC and dual-
timer modules are also mapped to a writable memory re-
gion, so we use a similar method to handle them.

The generic timer registers consist of a series of
timer and counter registers, and all of these regis-
ters are writable in EL3 except the physical counter
register CNTPCT EL0 and the virtual counter register
CNTVCT EL0. For the writable registers, we use the
same approach as handling memory-mapped timers to
manipulate them. Although CNTPCT EL0 is not directly
writable, the ARM architecture requires a memory-
mapped counter component to control the generation
of the counter value [8]. In the Juno board, the
generic counter is mapped to a controlling memory frame
0x2a430000-0x2a43ffff, and writing to the memory ad-
dress 0x2a430008 updates the value of CNTPCT EL0.
The CNTVCT EL0 register always holds a value equal
to the value of the physical counter register minus the
value of the virtual offset register CNTVOFF EL2. Thus,
the update to the CNTPCT EL0 register also updates the
CNTVCT EL0 register.

Note that the above mechanism only considers the

time consumption of NINJA, and does not take the time
consumption of the ATF into account. Thus, to make
it more precise, we measure the average time consump-
tion of the ATF during the secure exception handling (see
Appendix B) and minus it while restoring the timer val-
ues. Besides the timers, the malware may also leverage
the PMU to count the CPU cycles. Thus, NINJA checks
the enabled PMU counters and restores their values in a
similar way to the writable timers.

The external timing attack cannot be defended by
modifying the local timer since external timers are in-
volved. As the instruction tracing in NINJA is immune to
the timing attack, we can use the TS to trace the execu-
tion of the target with DS enabled and disabled. By com-
paring the trace result using the approaches described
in BareCloud [31] and MalGene [30], we may identify
the suspicious instructions that launch the attack and de-
fend against the attack by manipulating the control flow
in EL3 to bypass these instructions. However, the ef-
fectiveness of this approach needs to be further studied.
Currently, defending against the external timing attack is
an open research problem [20, 54].

7 Evaluation

To evaluate NINJA, we fist compare it with existing anal-
ysis and debugging tools on ARM. NINJA neither in-
volves any virtual machine or emulator nor uses the de-
tectable Linux tools like ptrace or strace. Moreover,
to further improve the transparency, we do not modify
Android system software or the Linux kernel. The de-
tailed comparison is listed in Table 1. Since NINJA only
relies on the ATF, the table shows that the Trusted Com-
puting Base (TCB) of NINJA is much smaller than exist-
ing systems.

7.1 Output of Tracing Subsystem
To learn the details of the tracing output, we write a sim-
ple Android application that uses Java Native Interface
to read the /proc/self/status file line by line (which
can be further used to identify whether ptrace is en-
abled) and outputs the content to the console. We use
instruction trace of the TS to trace the execution of the
application, and also measure the time usage. The status
file contains 38 lines in total, and it takes about 0.22 ms
to finish executing. After the execution, the ETF contains
9.92 KB encoded trace data, and the datarate is approxi-
mately 44.03 MB/s. Next, we use ptm2human [26] to de-
code the data, and the decoded trace data contains 1341
signpost instructions (80 in our custom native library and
the others in libc.so). By manually introspect the sign-
post instructions in our custom native library, we can re-
build the whole execution control flow. To reduce the



Table 1: Comparing with Other Tools. The source lines of code (SLOC) of the TCB is calculated by sloccount [47]
based on Android 5.1.1 and Linux kernel 3.18.20.

ATF = ARM Trusted Firmware, AOS = Android OS, LK = Linux Kernel

NINJA TaintDroid [22] TaintART [44] DroidTrace [56] CrowDroid [15] DroidScope [52] CopperDroid [45] NDroid [38]

No VM/emulator X X X X X

No ptrace/strace X X X X X X

No modification to Android X X X X X X

Analyzing native instruction X X X X X X

Trusted computing base ATF AOS + LK AOS + LK LK LK QEMU QEMU QEMU

SLOC of TCB (K) 27 56,355 56,355 12,723 12,723 489 489 489

storage usage of the ETM, we can use real-time con-
tinuous export via either a dedicated trace port capable
of sustaining the bandwidth of the trace or an existing
interface on the SoC (e.g., a USB or other high-speed
port) [11].

7.2 Tracing and Debugging Samples

We pickup two samples ActivityLifecycle1 and
PrivateDataLeak3 from DroidBench [21] project and
use NINJA to analyze them. We choose these two spe-
cific samples since they exhibit representative malicious
behavior like leaking sensitive information via local file,
text message, and network connection.

Analyzing ActivityLifecycle1. To get an overview
of the sample, we first enable the Android API tracing
feature to inspect the APIs that read sensitive informa-
tion (source) and APIs that leak information (sink), and
find a suspicious API call sequence. In the sequence,
the method TelephonyManager.getDeviceId and
method HttpURLConnection.connect are invoked in
turn, which indicates a potential flow that sends IMEI to a
remote server. As we know the network packets are sent
via the system call sys sendto, we attempt to intercept
the system call and analyze the parameters of the system
call. In Android, the system calls are invoked by corre-
sponding functions in libc.so, and we get the address
of the function for the system call sys sendto by disas-
sembling libc.so. Thus, we use NINJA to set a break-
point at the address, and the second parameter of the sys-
tem call, which is stored in register X1, shows that the
sample sends a 181 bytes buffer to a remote server. Then,
we output the memory content of the buffer and find that
it is a HTTP GET request to host www.google.de with
path /search?q=353626078711780. Note that the dig-
its in the path is exactly the IMEI of the device.

Analyzing PrivateDataLeak3. Similar to the previ-
ous analysis, the Android API tracing helps us to find a
suspicious API call sequence consisting of the methods
TelephonyManager.getDeviceId, Context.openF-

ileOutput, and SmsManager.sendTextMessage. As
the Android uses the system calls sys openat to open a
file and sys write to write a file, we set breakpoints at
the address of these calls. Note that the second parame-
ter of sys openat represents the full path of the target
file and the second parameter of sys write points to a
buffer writing to a file. Thus, after the breakpoints are hit,
we see that sample writing IMEI 353626078711780 to
the file /data/data/de.ecspride/files/out.txt.
The API SmsManager.sendTextMessage uses binder
to achieve IPC with the lower-layer SmsService in An-
droid system, and the semantics of the IPC is described
in CopperDroid [45]. By intercepting the system call
sys ioctl and following the semantics, we finally find
the target of the text message “+49” and the content of
the message 353626078711780.

7.3 Transparency Experiments
7.3.1 Accessing System Instruction Interface

To evaluate the protection mechanism of the system in-
struction interface, we write an Android application that
reads the PMCR EL0 and PMCNTENSET EL0 registers via
MRS instruction. The values of these two registers rep-
resent whether a performance counter is enabled. We
first use the application to read the registers with NINJA
disabled, and the result is shown in the upper rectan-
gle of Figure 7a. The last bit of the PMCR EL0 regis-
ter and the value of the PMCNTENSET EL0 register are 0,
which means that all the performance counters are dis-
abled. Then we press a GPIO button to enable the An-
droid API tracing feature of NINJA and read the regis-
ters again. From the console output shown in Figure 7b,
we see that the access to the registers is successfully
trapped into EL3. And the output shows that the real
values of the PMCR EL0 and PMCNTENSET EL0 registers
are 0x41013011 and 0x20, respectively, which indicates
that the counter PMEVCNTR5 EL0 is enabled. However,
the lower rectangle in Figure 7a shows that the value of
the registers fetched by the application keep unchanged.



(a) Reading PMU Register in an Application. (b) EL3 Output in the Secure Console.

Figure 7: Accessing System Instruction Interface.

This experiment shows that NINJA effectively eliminates
the footprint on the system instruction interface.

7.3.2 Accessing Memory Mapped Interface

In this section, we take ioremap function as an exam-
ple to evaluate whether the interception to the memory-
mapping functions works. As the ioremap function can
be called only in the kernel space, we write a kernel mod-
ule that remaps the memory region of the ETM by the
ioremap function, and print the content of the first 32
bytes in the region. Similar to the approach discussed
above, we first load the kernel module with NINJA dis-
abled, and the output is shown in the upper rectangle in
Figure 8a. Note that the 5th to the 8th bytes are mapped
as the TRCPRGCTLR register and the EN bit, which indi-
cates the status of the ETM, is the last bit of the register.
In the upper rectangle, the EN bit 0 shows that the ETM is
disabled. Next, we enable the instruction tracing feature
of NINJA and reload the kernel module. The lower rect-
angle in Figure 8a shows that the content of the memory
fetched by the module remains the same. However, in the
Figure 8b, the output from EL3 shows that the memory
of the ETM has changed. This experiment shows that we
successfully hide the ETM status change to the normal
domain, and NINJA remains transparent.

7.3.3 Adjusting the Timers

To evaluate whether our mechanism that modifies the
local timers works, we write a simple application that
launches a dummy loop for 1 billion times, and calculate
the execution time of the loop by the return values of the
API call System.currentTimeMillis(). In the first
experiment, we record the execution time with NINJA
disabled, and the average time for 30 runs is 53.16s with
a standard deviation 2.97s. In the second experiment,
we enable the debugging mode of NINJA and pause the
execution during the loop by pressing the GPIO button.
To simulate the manual analysis, we send a command rr

to output all the general purpose registers and then read
them for 60s. Finally, a command c is sent to resume

Table 2: The TS Performance Evaluation Calculating 1
Million Digits of π .

Mean STD # Slowdown

Base: Tracing disabled 2.133 s 0.69 ms

Instruction tracing 2.135 s 2.79 ms ∼ 1x
System call tracing 2.134 s 5.13 ms ∼ 1x
Android API tracing 149.372 s 1287.88 ms ∼70x

the execution of the target. We repeat the second exper-
iment with the timer adjusting feature of NINJA enabled
and disabled for 30 times each, and record the execu-
tion time of the loop. The result shows that the average
execution time with timer adjusting feature disabled is
116.33s with a standard deviation 2.24s, and that with
timer adjusting feature enabled is 54.33s with a standard
deviation 3.77s. As the latter result exhibits similar exe-
cution time with the original system, the malware cannot
use the local timer to detect the presence of the debug-
ging system.

7.4 Performance Evaluation
In this section, we evaluate the performance overhead of
the trace subsystem due to its automation characteristic.
Performance overhead of the debugging subsystem is not
noticed by an analyst in front of the command console,
and the debugging system is designed with human inter-
action.

To learn the performance overhead on the Linux bi-
naries, we build an executable that using an open source
π calculation algorithm provided by the GNU Multiple
Precision Arithmetic Library [46] to calculate 1 million
digits of the π for 30 times with the tracing functions dis-
abled and enabled, and the time consumption is shown
in Table 2. Since we leverage ETM to achieve the in-
struction tracing and system call tracing, the experiment
result shows that the ETM-based solution has negligible
overhead — less than 0.1%. In the Android API tracing,
the overhead is about 70x. This overhead is mainly due
to the frequent domain switch during the execution and
bridging the semantic gap. To reduce the overhead, we



(a) Reading ETM Memory Region. (b) EL3 Output in the Secure Console.

Figure 8: Memory Mapped Interface.
Table 3: The TS Performance Evaluation with CF-Bench [16].

Native Scores Java Scores Overall Scores
Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown

Base: Tracing disabled 25380 1023 18758 1142 21407 1092

Instruction tracing 25364 908 ∼ 1x 18673 1095 ∼ 1x 21349 1011 ∼ 1x
System call tracing 25360 774 ∼ 1x 18664 1164 ∼ 1x 21342 911 ∼ 1x
Android API tracing 6452 24 ∼ 4x 122 4 ∼ 154x 2654 11 ∼ 8x

can combine ETM instruction trace with data trace, and
leverage the trace result to rebuild the semantic informa-
tion and API usage offline.

To measure the performance overhead on the Android
applications, we use CF-Bench [16] downloaded from
Google Play Store. The CF-Bench focuses on measur-
ing both the Java performance and native performance
in Android system, and we use it to evaluate the over-
head for 30 times. The result in Table 3 shows that the
overheads of instruction tracing and system call tracing
are sufficiently small to ignore. The Android API tracing
brings 4x slowdown on the native score and 154x slow-
down on the Java score, and the overall slowdown is 8x.
Note that we make these benchmarks to be executed only
on Cortex-A57 core 0 by setting their CPU affinity mask
to 0x1 since NINJA only stays in that core.

7.5 Skid Evaluation
In this subsection, we evaluate the influence of the skid
problem to NINJA. Since the instruction tracing, system
call tracing, and memory read/write do not involve PMI,
these functionalities are not affected by the skid prob-
lem. In ART, each bytecode is interpreted as an array of
machine code. Our bytecode stepping mechanism rec-
ognizes the corresponding bytecode once it is executing
any machine code in the array, i.e., the skid problem af-
fects the bytecode stepping if and only if the instruction
shadow covers all the machine code for a bytecode. We
evaluate the listed 218 bytecode opcode [24] on the An-
droid official website, and it shows that the shadow re-
gion cannot cover the machine code for any of them.
Thus, the bytecode stepping does not suffer from the skid
problem. For a similar reason, the skid problem has no
influence on the Android API tracing.

However, the native code stepping and the breakpoint

Table 4: Instructions in the Skid Shadow with Represen-
tative PMU Events.

Event Number Event Description
# of Instructions
Mean STD

0x81-0x8F Exception related events that fir-
ing after taking exceptions

0 0

0x11 CPU cycle event that firing after
each CPU cycle

2.73 2.30

0x08 Instruction retired event that fir-
ing after executing each instruc-
tion

6.03 4.99

are still affected, and both of them use instruction retired
event to overflow the counter. Since the skid problem is
due to the delay between the interrupt request and the in-
terrupt arrival, we first use PMU counter to measure this
delay by CPU cycles. Similar with the instruction step-
ping, we make the PMU counter to count CPU CYCLES

event and initialize the value of the counter to its maxi-
mum value. Then, the counter value after switching into
EL3 is the time delay of the skid in CPU cycles. The
results of 30 experiments show that the delay is about
106.3 CPU cycles with a standard deviation 2.26. As
the frequency of our CPU is 1.15GHz, the delay is about
0.09µs. We also evaluate the number of instructions in
the skid shadow with some representative PMU events.
For each event, we trigger the PMI for 30 times and
calculate the mean and standard deviation of the num-
ber of instructions in the shadow. Table 4 shows the
result with different PMU events. Unlike the work de-
scribed in [42], the exception related events exhibits no
instruction shadow in our platform, and we consider it is
caused by different ARM architectures. It is worth not-
ing that the number of instructions in the skid shadow
of the CPU cycle event is less than the instruction re-
tired event. However, using the CPU cycle event may
lead to multiple PMIs for a single instruction since the



execution of a single instruction may need multiple CPU
cycles, which introduces more performance overhead but
with more fine-grained instruction-stepping. In practice,
it is a trade off between the performance overhead and
the debugging accuracy, and we can use either one based
on the requirement.

8 Discussion

NINJA leverages existing deployed hardware and is com-
patible with commercial mobile devices. However, the
secure domain on the commercial mobile devices is man-
aged by the Original Equipment Manufacturer (OEM).
Thus, it requires cooperation from the OEMs to imple-
ment NINJA on a commercial mobile device.

The approach we used to fill the semantic gaps re-
lies on the understanding of the kernel data structures
and memory maps, and thus is vulnerable to the privi-
leged malware. Patagonix [33] leverages a database of
whitelisted applications binary pages to learn the seman-
tic information in the memory pages of the target applica-
tion. However, this approach is limited by the knowledge
of the analyzer. Currently, how to transparently bridge
the semantic gap without any assumption to the system
is still an open research problem [27].

The protection mechanism mentioned in Section 6.1
helps to improve transparency when the attackers try
to use PMU or ETM registers, and using shadow reg-
isters [35] can further protect the critical system regis-
ters. However, if an advanced attacker intentionally uses
PMU or ETM to trace CPU events or instructions and
checks whether the trace result matches the expected one,
the mechanism of returning artificial or shadow register
values may not provide accurate result and thus affects
NINJA’s transparency. To address this problem, we need
to fully virtualize the PMU and ETM, and this is left as
our future work.

Though NINJA protects the system-instruction inter-
face access to the registers, the mechanism we used to
protect the memory mapped interface access maybe vul-
nerable to advanced attacks such as directly manipulat-
ing the memory-mapping, disabling MMU to gain phys-
ical memory access, and using DMA to access memory.
Note that these attacks might be difficult to implement in
practice (e.g., disabling MMU might crash the system).
To fully protect the memory-mapped region of ETM and
PMU registers, we would argue that hardware support
from TrustZone is needed. Since the TZASC only pro-
tects the DRAM, we may need additional hardware fea-
tures to extend the idea of TZASC to the whole physical
memory region.

Although the instruction skid of the PMI cannot be
completely eliminated, we can also enable ETM between
two PMIs to learn the instructions in the skid. More-

over, since the instruction skid is caused by the delay
of the PMI, similar hardware component like Local Ad-
vanced Programmable Interrupt Controller [54] on x86
which handles interrupt locally may help to mitigate the
problem by reducing the response time.

9 Conclusions

In this paper, we present NINJA, a transparent malware
analysis framework on ARM platform. It embodies a se-
ries of analysis functionalities like tracing and debugging
via hardware-assisted isolation execution environment
TrustZone and hardware features PMU and ETM. Since
NINJA does not involve emulator or framework modifi-
cation, it is more transparent than existing analysis tools
on ARM. To minimize the artifacts introduced by NINJA,
we adopt register protection mechanism to protect all in-
volving registers based on hardware traps and runtime
function interception. Moreover, as the TrustZone and
the hardware components are widely equipped by OTS
mobile devices, NINJA can be easily transplanted to ex-
isting mobile platforms. Our experiment results show
that performance overheads of the instruction tracing and
system call tracing are less than 1% while the Android
API tracing introduces 4 to 154 times slowdown.
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A Debugging Commands

Command Description

rr Output the value of all general purpose registers X0
to X30, the stack pointer, and the program counter.

rw n v Write 64-bit value v to the register named n and
output the name the register and its new value.

mr a s Output the content of the memory starting from 64-
bit virtual address a with size s. If the virtual ad-
dress does not exist, output Incorrect address.

mw a v Write 8-bit value v to the 64-bit virtual address a
and output the address and the 8-bit value stored in
the address. If the virtual address does not exist,
output Incorrect address.

ba a Add a breakpoint at the 64-bit virtual address a and
output the address. If the virtual address does not
exist, output Incorrect address.

bd a Delete the breakpoint at the 64-bit virtual address
a and output the address. If the virtual address
or breakpoint does not exist, output Incorrect
address.

bc Clear all the breakpoints and output succeed.
n Step to the next instruction and output the instruc-

tion.
nb Step to the next Java bytecode and output the byte-

code.
nm Step to the next Java method and output the call

stack.
c Continue the execution after a breakpoint and out-

put continued.

B Domain Switching Time

We use the PMU counter to count the CPU CYCLES event
and calculate the elapsed time by the delta of the value
and the frequency of the CPU. First we read the PMU
counter twice continuously and calculate the elapsed cy-
cles, and the difference in CPU cycles indicate the time
elapsed between the two continuous PMU read instruc-
tions. Then we insert an SMC instruction between the
two read instructions to trigger a domain switching with
NINJA disabled, and the difference of the CPU cycles
represents the round trip time of the domain switching in
ATF. At last, we measure the CPU cycles with NINJA
enabled, and this time consumption includes the time
consumption of both ATF and our customized exception
handler. To avoid the bias introduced by the CPU fre-
quency scaling, we set the minimum scaling frequency
equal to the maximum one to ensure that the CPU is al-
ways running in the same frequency. The results of 30
experiments are shown in the following table.

ATF Enabled NINJA Enabled Mean STD 95% CI

0.007 µs 0.000 µs [0.007 µs, 0.007 µs]
X 0.202 µs 0.013 µs [0.197 µs, 0.207 µs]
X X 0.342 µs 0.021 µs [0.349 µs, 0.334 µs]
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