
User-friendly deniable storage for
mobile devices

Bing Chang a,b,c,d, Yao Cheng e, Bo Chen f, Fengwei Zhang g, Wen-Tao Zhu a,b,*,
Yingjiu Li d, Zhan Wang h

a State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
b Data Assurance and Communications Security Research Center, Chinese Academy of Sciences, Beijing 100093, China
c University of Chinese Academy of Sciences, Beijing 100049, China
d School of Information Systems, Singapore Management University, Singapore 178902
e Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore 138632
f Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA
g Department of Computer Science, Wayne State University, Detroit, MI 48202, USA
h RealTime Invent, Inc., Beijing 100102, China

A R T I C L E I N F O

Article history:

Received 15 March 2017

Received in revised form 15 August

2017

Accepted 7 September 2017

Available online 21 September 2017

A B S T R A C T

Mobile devices are prevalently used to process sensitive data, but traditional encryption may

not work when an adversary is able to coerce the device owners to disclose the encryption

keys. Plausibly Deniable Encryption (PDE) is thus designed to protect sensitive data against

this powerful adversary. In this paper, we present MobiPluto, a user-friendly PDE scheme for

denying the existence of sensitive data stored on mobile devices. A salient difference between

MobiPluto and the existing PDE systems is that any block-based file systems can be de-

ployed on top of it. To further improve usability and deniability of MobiPluto, we introduce

a fast switching mechanism and incorporate the widely-used Near Field Communication

(NFC) technology. Users can securely switch from the public mode to the hidden mode within

10 seconds, which is a significant improvement compared to previous solutions. Users can

also store strong passwords on NFC cards and tap them to enter the system, which signifi-

cantly liberates them from the burden of memorizing and typing strong passwords. Most

importantly, the users can deny the existence of the hidden data without the skill to cam-

ouflage as long as the NFC cards are used properly.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Mobile devices are frequently used to process personal or
mission critical data. Encryption can be utilized to protect those
sensitive data. However, it may not work for all the cases. For
example, in certain geopolitical areas with tensions, the border
inspector may compulsively require the passengers to reveal
the content stored encrypted on their mobile devices. In extreme

situations, the device owner may be tortured to surrender de-
cryption key.This could prove detrimental and may compromise
security of particular professionals such as human rights ac-
tivists, who may possess evidence of violence.

Plausibly deniable encryption (PDE) was explored to main-
tain the privacy of communicated data against a coercive
attacker, who can approach and coerce either the sender or
the receiver into revealing the decryption keys (Canetti et al.,
1997). This practice should not be confused with encryption,
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as regular encryption is overt, while PDE is covert. PDE can be
applied to storage encryption and a variety of PDE systems have
been published for PC platform, including Rubberhose (Assange
et al., 2012), TrueCrypt (2012), etc.

As the first PDE system implemented for mobile devices,
Mobiflage (Skillen and Mannan, 2013) requires a physical or an
emulated FAT32 SD card which is not necessarily present in
mobile devices. Mobiflage is then extended (Skillen and Mannan,
2014) to support Ext4 file system by modifying the driver of Ext4.
Although the extended Mobiflage no longer requires a physi-
cal or an emulated FAT32 SD card, its extensive modifications
to the Ext4 driver may indicate the use of PDE which may
lead to compromise of deniability. MobiHydra (Yu et al., 2014)
improves Mobiflage by adding support to multiple levels of
deniability and mode switching without rebooting, but it still
requires a physical or an emulated FAT32 SD card.

All the prior solutions (Assange et al., 2012; McDonald and
Kuhn, 2000; Ragnarsson et al., 2012; Skillen and Mannan, 2013,
2014; TrueCrypt, 2012; Yu et al., 2014) are not suitable for mobile
devices, due to their poor performance, getting inadequate
support from the mobile operating systems, or being forced
to modify the associated file systems as a last resort. In this
work, we propose MobiPluto, a user-friendly PDE solution for
mobile devices. MobiPluto can achieve a user friendly design,
providing several salient features:

• File-system-friendly. As data hiding is achieved at the block
level, any block-based file systems can be deployed without
modifications. To the best of our knowledge, no prior work
can provide such a novel feature.

• Short switching time. Users can switch from the public mode
to the hidden mode within 10 seconds. Previous solutions
require more than 1 minute which may lead to missing the
best timing to collect sensitive data.

• Deniability as a side-effect. MobiPluto achieves deniability
as nothing but a “side-effect” of combining thin provision-
ing with encryption.

• Better usability and deniability. Users can store the pass-
words in NFC cards instead of memorizing them. Moreover,
users can tap NFC cards to input passwords, eliminating the
need of typing passwords. More importantly, by destroy-
ing the NFC card, users can eliminate the possibility of the
sensitive hidden data of being disclosed, significantly im-
proving deniability.

This article extends our conference version (Chang et al.,
2015) in the following aspects:

• We present a new switching method which eliminates the
need of rebooting the device when the user wants to switch
from the public mode to the hidden mode. The user can
enter the hidden password in the screen lock and the system
will switch to the hidden mode. The switching time is less
than 10 seconds. Note that previous solutions need to reboot
the device which takes more than 1 minute. Security analysis
shows that fast switching does not bring deniability issues.

• We take advantage of the NFC technology so that users can
store strong passwords on NFC cards and use these cards
for admission, relieving themselves of memorizing and
entering complicated passwords. Users can also deny the

existence of any hidden data as long as the adversary does
not possess usable cards.

• We implement the fast switching mechanism and the NFC
card support on our system. We also provide a thorough se-
curity analysis on the fast switching mechanism and the
adoption of the NFC technology. In addition, we conduct ex-
periments to demonstrate the usability improvement owing
to the introduction of NFC. The results show that using NFC
cards is 18 times faster than typing a lengthy password. We
also conduct a more comprehensive discussion on and com-
parison with related work.

The rest of the paper is organized as follows. Section 2 pres-
ents the background. In Section 3, we introduce the system
model and the threat model. In Section 4, we describe MobiPluto
design. In Section 5, we discuss the implementation for Android.
We present the evaluation results in Section 6, including se-
curity analysis and performance evaluation. Section 7 presents
related work and Section 8 is the conclusion.

2. Background

2.1. Deniable encryption

Plausibly deniable encryption (PDE) was first explored to main-
tain the privacy of communicated data against a coercive
attacker, who can approach and coerce either the sender or
the receiver into revealing the decryption keys (Canetti et al.,
1997). When being applied to storage encryption, PDE allows
a data owner to decrypt a ciphertext to a plausible and benign
decoy plaintext with a different key, such that the data owner
is able to deny the existence of the original sensitive data
(Skillen and Mannan, 2013). To provide plausibility, a PDE
system usually requires that (Ragnarsson et al., 2012), 1) the
decoy plaintext can be normally found on a computer; 2) all
the ciphertexts should be “accounted for”, i.e., having a plau-
sible explanation. Existing PDE systems rely on either
steganography (Anderson et al., 1998; McDonald and Kuhn, 2000;
Pang et al., 2003) or hidden volumes (Skillen and Mannan, 2013;
TrueCrypt, 2012; Yu et al., 2014) to achieve deniability.

2.2. Thin provisioning

Thin provisioning (Kernel, 2017) has been designed to opti-
mize storage utilization by eliminating the need for installing
unnecessary storage capacity. With thin provisioning, a storage
administrator only allocates logical storage space to an appli-
cation and the system will not release the physical storage
capacity until it is actually required. This “on-demand” storage
avoids pre-allocating physical storage capacity, eliminating the
waste caused by unused capacity. In the Linux kernel, thin pro-
visioning has been implemented by the dm-thin-pool module,
which works with two devices, a data device and a metadata
device. The data device contains blocks from various volumes,
allocated sequentially from the beginning, while the metadata
device contains the block mappings.Thin provisioning is added
to LVM and can provide much more flexible storage manage-
ment. Logical Volume Manager (LVM (Levine, 2016)) has gained

164 c om pu t e r s & s e cu r i t y 7 2 ( 2 0 1 8 ) 1 6 3 – 1 7 4



popularity on Android for being able to flexibly handle storage
(CyanogenMod; Xda-Developers, 2012).

This work tries to adapt thin provisioning to build file-
system-friendly deniable storage for mobile devices, for the
following reasons: 1) The dm-thin-pool module has been added
to the kernel, and we can simply rely on the existing kernel
features to build PDE systems for mobile devices; 2) A thin
volume can be used to install any block-based file systems, and
thin provisioning can transform non-sequential allocation on
the thin volume to sequential allocation on the underlying
storage. This makes it possible to combine both thin provi-
sioning and hidden volumes to build file-system-friendly PDE
systems.

2.3. Near field communication (NFC)

NFC (Curran et al., 2012) is a set of short-range (typically 10 cm
or less) wireless technologies which is used widely nowadays
(e.g., in mobile payments). Most recent smartphones are
equipped with NFC technology. This work tries to make use
of NFC technology to improve usability and deniability of PDE
systems. Since NFC cards and NFC-compatible phones are
widely used, we do not need to introduce any extra device which
may lead to compromise of deniability. NFC can improve the
usability, because users can store strong passwords on NFC
cards and tap the NFC cards to enter the system. This re-
leases users from the burden of memorizing and typing strong
passwords. In addition, NFC can help improve the deniability
offered by a PDE system, because users can deny the exis-
tence of the hidden data as long as the adversary does not
obtain the NFC cards used to encrypt/decrypt the hidden data.
More importantly, users can eliminate the possibility of the sen-
sitive hidden data of being disclosed by destroying the NFC cards
(e.g., burn, cut or break the NFC cards).

3. Assumptions

3.1. System model

We mainly consider mobile devices equipped with storage
media that expose a block-based access interface. Such block-
based storage media are used extensively as the internal or
external storage for mobile devices nowadays (Skillen and
Mannan, 2013), e.g., eMMC (Samsung, 2015), microSD cards, etc.
MobiPluto needs to be merged with Android code stream, such
that the PDE capability is widespread, and the availability of
PDE will not become a red flag. For a mobile device that uses
MobiPluto, we assume the mobile OS, the bootloader, as well
as the firmware and the baseband OS are all malware-free (i.e.,
trusted). Especially when the device is in the PDE mode, the
user will not use malicious apps controlled by the adversary.

3.2. Threat model

We consider a computationally bounded adversary, who can
fully control a mobile device after having captured the de-
vice’s owner. The adversary can get root privilege of the device,
and fully control the device’s internal and external storage.

Additionally, the adversary can coerce the device’s owner to
surrender keys or NFC cards, in order to decrypt the storage
and obtain sensitive data. As mobile devices usually commu-
nicate with the external environment, the adversary may also
collude with the wireless carriers or the ISPs to collect the
network activity logs of victim devices.

We do not consider an adversary who can continuously
monitor a victim device, and can stealthily take periodic snap-
shots of the device’s storage. This would be practical as the
adversary usually can have access to a mobile device only after
seizing the user (Skillen and Mannan, 2013).The adversary does
not capture a mobile device which is working in the PDE mode.
Otherwise, he/she can trivially retrieve the sensitive data from
the PDE mode. In addition, the adversary may know the design
of MobiPluto. However, he/she does not have any knowledge
on the keys, passwords, and the offset of the hidden volume.
Finally, the adversary will stop coercing the device’s owner once
being convinced that the decryption keys have been revealed.

4. MobiPluto design

In this section, we present MobiPluto, a user-friendly PDE system
for mobile devices by utilizing hidden volumes and thin pro-
visioning. MobiPluto is named after the Helmet of Pluto, which
is capable of turning its wearer invisible according to classi-
cal mythology (Crystalinks, 2015).

4.1. Overview

MobiPluto is able to deny the existence of sensitive data by
hiding volumes (storing sensitive data) in the empty space of
the storage medium. For simplicity of presentation, we con-
sider a simple case which has only two volumes: a public
volume created for storing regular data, and a hidden volume
created for storing sensitive data.The data stored in the hidden
volume are those whose existence the owner wants to deny.
If multi-level deniability is required, the number of hidden
volumes can be varied accordingly (Yu et al., 2014). By utiliz-
ing the interesting properties offered by thin provisioning
(Section 2.2), we build thin logical volumes (“thin volumes” for
short) to achieve a file-system-friendly deniable storage solu-
tion for mobile devices.

In MobiPluto, the public volume is protected by a decoy pass-
word and the hidden volume is protected by a hidden password.
Specifically, we use a randomly generated decoy key to encrypt
the public volume and use the decoy password to encrypt
the decoy key, which will be stored in the encryption footer
(located in the last 16 KB of the userdata partition). We use a
randomly generated hidden key to encrypt the hidden volume,
and use the hidden password to encrypt the hidden key. The
encrypted hidden key will be stored at a secret offset which
is determined by the hidden password.To achieve a file-system-
friendly PDE design, we choose to create thin volumes in the
public volume and the hidden volume, respectively. A thin
volume created on top of the public volume allows to deploy
any type of block-based file systems for managing public data.
Similarly, a thin volume created on top of the hidden volume
can be used to deploy any block file systems for managing
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hidden sensitive data. Thin provisioning can ensure that the
data in the public thin volume will not over-write the data in
the hidden thin volume. Upon booting, the password will be
used to decrypt the key and the decrypted key will be used to
decrypt the corresponding volume. Specifically, if the owner
provides the decoy password, the system will boot into public
mode, in which the content of the public volume will be present.
The hidden volume part of the storage looks no different from
random data. In this fashion, the adversary (Section 3) will be
convinced that no sensitive data exist.To process sensitive data,
the owner should use the hidden password and switch to the
PDE mode, in which the hidden volume will be located and then
decrypted using the hidden key.

To further improve MobiPluto’s usability, we introduce a fast
switching mechanism and propose to use NFC cards to store
strong passwords.The existing PDE solutions for mobile devices
(Skillen and Mannan, 2013, 2014; Yu et al., 2014) all require re-
booting to switch modes, which is unfortunately time-
consuming (need more than 1 minute). Our new fast switching
mechanism eliminates the need for rebooting the device and
is able to reduce the switching time to less than 10 seconds
(Section 6.2).To protect sensitive data, we usually need a strong
password for the hidden volume. However, if the password is
chosen by the user, security cannot be ensured as the user tends
to choose weak password. In addition, if the user needs to
memorize the password, when he/she is facing coercion, the
deniability will really depend on his/her willpower and ability
to camouflage. To address these concerns, we first generate a
strong password for the user and then store the password in
an NFC card with security features, by which we can allow the
user to choose a strong password without struggling to memo-
rize it. Utilizing NFC technology is practical as most of the
modern mobile devices are equipped with NFC features. In ad-
dition, by destroying the NFC card, the user can eliminate the
possibility that the password for the hidden sensitive data will
be leaked, and deniability can be enhanced in some sense.

4.2. Storage layout

Public volume: we create an encrypted block device using the decoy
key over the entire disk. We then use LVM to create a physical
volume on the encrypted block device. A physical volume label will

be placed in the second 512-byte sector. We further create a
volume group within this physical volume. The metadata of the
volume group will be placed right after the physical volume label
(see Fig. 1). Next, we create a small logical volume, which is
used as the metadata device for the thin pool. We also create a
large logical volume in the remaining space of the volume
group, which is used as the data device for the thin pool. LVM
allocates space in the data device to thin volumes, and the cor-
responding mapping information is kept in the metadata device.
Each thin volumes can allow to be deployed any block-based file
systems (e.g., Ext4).

Hidden volume: we first calculate an offset using the hidden
password. At the offset, the encrypted hidden key (encrypted
using a key derived from the hidden password) and the en-
crypted hidden password are stored. Note that the hidden
password is encrypted by the hidden key. We create another
encrypted block device within the space between the offset and
the end of the storage medium (see Fig. 1). A thin volume, which
is used to store the sensitive hidden data, is created in this block
device following the aforementioned steps. Note that any block-
based file systems can also be deployed on this thin volume.

4.3. File-system-friendly deniability

Different file systems may use different allocation strategies.
FAT32 has the nature of supporting hidden-volume mecha-
nism due to its concentrated metadata and sequential
allocation. For a FAT32 formatted device, we can simply place
the hidden volume somewhere in the second half of the storage
medium, by which the data in the hidden volume will not be
easily overwritten by the data in the public volume. However,
it will be problematic to place hidden volumes in an Ext4 for-
matted device, because: First, the data in the hidden volumes
may overwrite all or part of the public volume’s metadata. By
observing this abnormal overwrite, the adversary may suspect
the existence of hidden volumes; Second, the data from the
public volume may easily overwrite the data in the hidden
volumes. In general, if the device is formatted with a file system
having similar characteristics like Ext4, we cannot simply create
hidden volumes within it.

Thin provisioning can help address the aforementioned
concern. By using thin provisioning, we can first create a thin

Fig. 1 – MobiPluto storage layout.
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pool and then create thin volumes in the thin pool. The thin
pool ties together a small metadata device and a data device,
and the latter occupies most of the storage space. Interest-
ingly, the data device in thin provisioning is used linearly (i.e.,
the space maps allocate space linearly from front to back). To
avoid fragmenting free space, the allocation always goes back
and fills the gaps in the data device. In this way, thin provi-
sioning can transform the possibly non-sequential allocation
on the thin volume to sequential allocation on the data device.
This renders it possible to combine hidden volumes and thin
provisioning to achieve a PDE solution that allows any block-
based file systems to be deployed.

Thin provisioning provides a logical block device (a thin
volume), which allows to deploy an arbitrary block-based file
system. No matter how the file system uses the logical device,
the changes on the data device are linear (see Fig. 2). On the
thin volume, the non-sequential addresses are mapped to se-
quential addresses on the data device through mappings in the
metadata device. As a result, we can create hidden volumes
on the second half of the public volume’s data device. Since
the data in the public volume are always written sequen-
tially to the data device (regardless of the allocation strategies
of the deployed file system on the thin volume), it is very un-
likely that they will overwrite the hidden volumes. In other
words, the file-system-friendly feature can be achieved.

4.4. Size calculation

Next, we describe how to calculate the offset and the size of
the hidden volume. For deniability purpose, the thin volume
size should be set the same as the total disk size in the public
mode.

The hidden volume starts at a specific offset on the storage
medium. MobiPluto generates this offset using hidden pass-
word in the following way (Skillen and Mannan, 2013):

offset vlen H pwd salt vlen= × − ( ) ×( )( )0 75 0 25. mod . .

Here, vlen denotes the number of 512-byte sectors on the
physical block device; H is a PBKDF2 iterated hash function
(Kaliski); pwd is the hidden password; salt is a random salt value
for PBKDF2 and it is the same as the one stored in the en-
cryption footer. Thus, we do not need to store another salt.

The hidden volume is stored after the encrypted hidden key
(stored at the offset). The hidden volume size can be calcu-
lated as follows:

S vlen offset S Shid key footer= − − − .

Here, Skey and Sfooter denote the sizes of the encrypted hidden
key and of the encryption footer respectively.

4.5. Fast switching mechanism

Fast switching is a desired feature for PDE systems on mobile
devices. Imagine that a device owner just faces an emer-
gency and he/she wants to instantly switch the device to the
hidden mode to collect some sensitive data, which requires a
short switching time. However, the existing PDE solutions for
mobile devices (Skillen and Mannan, 2013, 2014; Yu et al., 2014)
all require rebooting to switch modes, which is time-consuming.
The main concern is how to switch fast from the public mode
to the hidden mode without compromising deniability. We find
it possible to restart the Android framework rather than the
entire device, which can help significantly reduce the switch-
ing time. We describe our new fast switching mechanism in
the following. The default screen lock app of Android is chosen
to be the entrance of the hidden mode, because it can allow
the user to enter the password and its widespread usage would
not become an indication of the existence of deniability. The
fast switching process is shown in Fig. 3. After the user enters
a password, the system first tests whether it is the screen lock
password. If so, the screen is unlocked. Otherwise, the system
calculates the offset and tests whether the password is the
hidden password. If so, the system will shut down the Android
framework, unmount the public volume, decrypt and mount
the hidden volume, and then restart the Android framework.
Otherwise, the system will ask the user to enter another
password.

4.6. Activation by NFC cards

4.6.1. DESFire EV1
In our design, we use the DESFire EV1 card (NXP, 2016), which
provides advanced security features, as the activation of
MobiPluto. A DESFire EV1 card could hold up to 28 applica-
tions, each of which can provide 32 files. Hardware DES and
AES algorithms can be applied to both card level and application
level. Integrity check is carried out for every communication
message.

A three-pass authentication is used to establish a secure
communication channel between a mobile device and a card
before each access. As shown in Fig. 4, k denotes the shared

Fig. 2 – Thin provisioning and the hidden volume.
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symmetric card key between a mobile device and a DESFire
card, Ek(x) means the encryption of x using key k. Ra and Rb

denote the random numbers chosen for each round of com-
munication. Ra′ and Rb′ are the results of left rotation of Ra and
Rb, respectively. When a mobile device requests to access the
card storage, it sends out the authentication request contain-
ing the index number of the specific key on the card. Then, the
card uses the key indicated by the key number to encrypt a
random number Rb, and sends the cipher text back to the mobile
device. The mobile device decrypts the data using the key, and
rotates the decryption result to the left by 8 bits, which is then
denoted as Rb′ . After that, the mobile device chooses a random
number Ra, and encrypts the concatenation of Ra and Rb′ . The
card compares the received Rb′ with Rb to check whether Rb′
is the result of Rb rotating left by 8 bits. If so, it indicates that
the mobile device indeed shares the same key with the card.
Later, the card rotates the received Ra to the left by 8 bits, which
is then denoted as Ra′ , and sends it back to the mobile device.
The mobile device compares the received Ra′ to Ra. If Ra′ equals
to the result of Ra rotating left by 8 bits, it means that the card
is the target card instead of any fake card which tries to replay
valid messages. Finally, after the computation and compari-
son, both sides can verify each other’s possession of k. A session
key is generated after each authentication, and will be used
later to encrypt communication messages. DESFire cards
support a set of cryptographic algorithms, each of which com-
putes their session keys based on Ra and Rb using different
formulas. For example, the AES session key is generated by com-
bining Ra and Rb as the formula shown below.

SessionKey R R R Ra b a b= [ ] [ ] [ ] [ ]0 3 0 3 12 15 12 15, , , , .

4.6.2. NFC mode initialization
The initialization of MobiPluto in NFC mode, which mainly gen-
erates the keys and sets up the card, should be performed in
a secure and isolated environment. It requires one NFC card

for each mode, including the decoy card for the public mode
and the hidden card for the PDE mode.

We build an assisting application for Android which fulfils
the task of initializing NFC cards. This application can be used
to generate strong passwords. After the PDE storage is created
and the hidden mode is booted, this application will be in-
stalled separately in the public and the hidden mode to initialize
the corresponding NFC card. The application writes the gen-
erated password to the public and hidden NFC card, respectively.
After successful writes, users can use the NFC card to acti-
vate the corresponding mode. Note that the application does
not need to be deleted after having activated the correspond-
ing NFC card. This will not compromise deniability, because
the assisting application in the public mode is purely used to
activate the NFC card for the public mode, and has nothing to
do with the hidden mode. In addition, the assisting applica-
tion in the hidden mode will not create any trace to the public
mode, and the adversary who can have access to the public
mode, is not able to learn anything about the assisting appli-
cation of the hidden mode.

When the device is booted but fails to find a valid Ext4 file
system on the userdata partition, the system would ask for an
NFC tap instead of a password. It depends on the NFC card pro-
vided by the user whether the device boots into the public mode
or the PDE mode. If the NFC card provided by the user is the
decoy card, the device would successfully decrypt the key in
the footer and further decrypt the public storage with this key.
If the NFC card provided by the user is the hidden card, the
system would calculate the offset and boot into the PDE mode.
The system would not boot until a valid card is provided.

During the use of NFC-enabled MobiPluto, users do not need
to memorize the passwords with high entropy. Instead, they
just need to take care of the NFC cards. Also, users can make
duplicate cards and store them in a safe place for backup. In
critical situations during the use of PDE mode, we highly rec-
ommend users to dispose the hidden NFC card or destroy it
with a little twist, and reboot the device into public mode to
keep the deniability.

5. Implementation

We implement a prototype of MobiPluto on an LG Nexus 4
phone and its Android version is 4.2.2. We modify the Android
volume daemon (VOLD) and the Android screen lock app to
implement the basic function, the fast switching mechanism
and NFC cards support. We also change some of the default

Fig. 3 – MobiPluto fast switching process.

Fig. 4 – Three-pass authentication between a mobile device
and an NFC card.
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kernel configurations so that we can use the required fea-
tures (e.g., thin provisioning in the kernel). In addition, we
compile Logical Volume Manager (LVM) and thin provision-
ing tools (Thornber, 2015) for Android and put them in the boot
image.

5.1. Thin provisioning on android

Now, we describe how we run thin provisioning on Android.
Thin provisioning is available in the Linux kernel since version
3.2. Android 4.2.2 uses the Linux kernel 3.4, but the default con-
figuration disables this feature. Therefore, we have to enable
it and recompile the kernel. In addition, since we use XTS-AES
(Martin, 2010), the xts and gf128mul kernel crypto modules
should be enabled, too. It is not enough to enable only the thin
provisioning feature in the kernel. We have to use LVM to setup
logical volumes. Furthermore, we use thin provisioning tools
to activate the thin volumes. Thus, we compile LVM and thin
provisioning tools for Android. The compiling process re-
quires a specific environment for Android. Besides the gcc and
the g++ tool chains for Android, both tools need to be statically
linked. For static compiling, we add “–enable-static_link”
when configuring LVM and we add “LDFLAGS=-static” to the
makefile of thin provisioning tools. Furthermore, the default
LVM configuration does not enable the thin provisioning,
so we add “–with-thin=internal” in the LVM configuration
for that. Next, we add both tools to the boot.img using
unpackbootimg and mkbootimg which are provided by AOSP
(Android, 2017). Note that we modify the access permissions
of these files by adding “chmod” command to mako.init in the
boot.img. Otherwise, we are not able to use them. After en-
abling thin provisioning feature in the kernel and adding the
tools to the boot.img, we can use thin provisioning on Android.

5.2. User interface and pre-boot authentication

Users can use a command-line utility, vdc, to activate
MobiPluto PDE; the command is as follows: “vdc cryptfs pde

wipe 〈decoy_pwd〉 〈hidden_pwd〉”. The default Android shell
does not maintain history, and thus the commands or the pass-
words cannot be retrieved from a captured Android device.

To make the hidden volume indistinguishable, we first wipe
the entire internal storage with random noise. For the public
volume of MobiPluto, we use a random key to create an en-
crypted block device and store the encrypted key and the salt
in the encryption footer. We then create a thin volume on the
encrypted block device and create an Ext4 file system on the
thin volume. We have described the procedure of initializing
a public volume and a hidden volume in Section 4.2. The size
of the metadata device is calculated according to Section 4.4.
Sreq is chosen as 50 for now, and a more reasonable value will
be investigated in our future work.

When the device is booted but fails to find a valid Ext4 file
system on the userdata partition, the system will ask the user
to enter a password. The default Android will use this pass-
word to decrypt the key in the footer and decrypt the storage
medium with this key. If a valid Ext4 file system can be
mounted, the system will continue to boot. However, MobiPluto
creates a thin volume instead of an Ext4 file system on the

encrypted block device. It would be time consuming if MobiPluto
enables the thin volume to check the existence of Ext4 file
system by mounting it. To reduce the time of checking, we just
test whether there is a thin volume on the encrypted block
device. When the user enters a password, the system will check
whether there is a thin volume on the public volume. If so, the
password is the decoy password and the system will boot into
the public mode. Otherwise, the system will calculate an offset
and check whether there is a thin volume on the hidden
volume. If so, the password is the hidden password and the
system will boot into the PDE mode. Otherwise, the system asks
for another password.

5.3. Fast switching support

5.3.1. Changes to Android screen lock
The original screen lock checks whether the password being
entered is the screen lock password. If so, the system simply
unlocks the screen. Otherwise, the system will request a correct
password. We modify the Android screen lock as an entrance
of the hidden mode. The system first checks whether the pass-
word is the screen lock password. If not, the system will pass
the password to VOLD which will check whether the pass-
word is the hidden password. If so, the system will switch to
the hidden mode. Otherwise, the user is requested to enter
another password.

5.3.2. Changes to Android Volume Daemon
We implement a switching function in Android Volume Daemon
(VOLD) to verify the password and switch to the hidden mode.
The input of this function is a password and it returns −1 if
the password is not the hidden password. Otherwise the system
switches to the hidden mode.To verify the password, the system
first reads the salt from the encryption footer. Then an offset
is derived using the password and the salt. After that, the system
reads the encrypted master key and the encrypted password
at the offset. Note that the encrypted password is derived by
encrypting the password using the hidden key.Then the system
decrypts the master key using the password and salt. To verify
the password, the system encrypts the password using
the master key. If the result is the same as the previous en-
crypted password, the password is correct and the system begins
to switch to the hidden mode. Otherwise the password is wrong
and the function simply return −1. To switch to the hidden
mode, the system first shuts down the Android framework to
unmount “/data” partition. Then the volume group will be de-
activated and the encrypted block device will be deleted. After
that, a new encrypted block device will be created beginning
at the offset using the hidden key. The thin volume on the en-
crypted block device will be activated and mounted to “/data”.
Then the Android framework is restarted and the hidden mode
is activated.

5.4. NFC card support

Besides activation using passwords, MobiPluto provides acti-
vation using NFC cards for both the public mode and the hidden
mode. At the initialization stage, which is supposed to be in
a secure and isolated environment, users can initialize the
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NFC-enabled MobiPluto with the assistance from the applica-
tion we have designed.

The initialization takes two steps with the help of our as-
sisting application. The first step is to use a command-line
utility, vdc, to activate MobiPluto PDE. This step requires two
passwords for both the public mode and the hidden mode. Our
assisting application will generate high-quality passwords for
the user to activate MobiPluto PDE. The second step is that,
after the user activates MobiPluto PDE, he/she needs to boot
into the hidden mode to complete the NFC card initializa-
tion. Our assisting application is used to initialize the NFC card
configuration, including configuring the encryption mode
and card key, and writing the passwords to the correspond-
ing NFC cards.

During the use of NFC-enabled MobiPluto, when the device
is booted but fails to find a valid Ext4 file system in the userdata
partition, the system will wait for the user to tap an NFC card.
When the user taps a card, the activity showing on screen reads
the stored passwords.The system will boot into different modes
according to the card that the user presents.

We face several challenges in providing NFC support. First
of all, when the device is booted but fails to find a valid Ext4
file system, it is a minimal system that only provides some core
functions on Android. Unfortunately, NFC module is not con-
sidered as a core function. We manage to add the NFC module
to the core application list by modifying the attribute “coreApp”
to “true” in its manifest file. In this case, MobiPluto can use
NFC module at the early stage of the boot.

Second, we have to consider the security of password stored
on the card. Any unauthorized access should be denied. During
the initialization, the card key of the DESFire card is acti-
vated. Meanwhile, we configure the card to the fully enciphered
mode and use AES encryption. This configuration means that
any subject accessing to the card is required to possess the card
key, and at the same time, all the communications between
the device and the card are encrypted using AES session keys
which are different for different authentication sessions.

Third, it is important to store the card key securely.The card
key to access the NFC card is shared between the device and
the card. Anyone with the card key can get access to the card
and obtain the password. However, the challenge is that before
Android finds a valid Ext4 file system, i.e., when Android is ex-
pecting a password or an NFC card tap, the accessible storage
is very limited. The card key, which is required to read the NFC
card, cannot be stored in normal storages because they are not
mounted yet. In this situation, a solution is to use the storage
in the encryption footer. We use the encrypted bytes in the en-
cryption footer as the card key, i.e., the first 16 bytes are used
as the card level key, and the latter 16 bytes are used as the
application level key. In our assumption, the adversary cannot
get the NFC card for the PDE mode after getting the mobile
device. Therefore the card key can prevent any adversary who
gets the hidden card from accessing the stored data.

Last, in our implementation, we cannot use Mifare ad-
vanced SDK (Mifare, 2016), which encapsulates primary
operations on DESFire card on Java level, to perform opera-
tions on the NFC card. MobiPluto needs to be merged into
Android code. However, Android cannot accept the obfusca-
tion characters in Mifare SDK during the compiling. Thus, we
process the command and data in DESFire protocol at byte level,

and further implement the whole process of three-pass au-
thentication, communication message encryption, message
authentication code calculation, and NFC card read/write
operation.

6. Evaluation results

6.1. Security analysis

6.1.1. Deniability provided by hidden volumes
In general, storage units are not filled with random data when
coming from the manufacturers. In addition, the operating
system installation procedures do not fill the entire storage with
random data. Thus, the adversary may suspect the existence
of PDE after decrypting the disk with a decoy key, as it can find
out random data which is not “accounted for” (Section 2.1). A
plausible explanation from the device owner can be that he/
she always fills the disk with random data before putting file
systems on it. Although the adversary has the full knowledge
of MobiPluto design (Section 3.2), without knowing the secrets,
it cannot prove the existence of hidden volumes, as they are
encrypted by FDE and are indistinguishable from the initially
filled random data (note that MobiPluto uses the encryption
function for FDE as the pseudorandom number generator).
To prevent the adversary from identifying hidden volumes
without recovering any hidden plaintexts, MobiPluto uses XTS
as the block cipher mode, which has been designed for disk
encryption, and is able to prevent attacks such as ciphertext
manipulation and cut-and-paste (Martin, 2010).

6.1.2. Thin provisioning/LVM specific security issues
MobiPluto uses both thin provisioning and LVM tools. Thin
provisioning/LVM in either the public mode or the hidden mode
will have its own label, VG metadata, metadata device and
data device (Sec. 4), which are stored in its own userdata par-
tition, encrypted by dm-crypt with different keys (i.e., decoy
key and hidden key). For the hidden mode specifically, the lo-
cation of the userdata partition is secret and can only be derived
when knowing the hidden password. Thus, when the adver-
sary looks into the public volume (i.e., in the public mode), he
will not have any clues of the data related to thin provisioning/
LVM in the hidden volumes.

6.1.3. Fast switching related issues
MobiHydra (Yu et al., 2014) proposes to use “the shelter volume”
to store sensitive data temporarily, but it suffers from the
side channel attack (Czeski et al., 2008). Due to the shared OS,
the information of the hidden data may be recorded in the
public volume (Czeski et al., 2008), leading to compromise of
deniability. In addition, MobiHydra (Yu et al., 2014) needs a
special app to process the hidden data, the existence of the
special app may make the user suspicious. However, our
design can prevent the information leakage problem, since we
isolate the hidden volume from the public volume. Although
the hidden password is entered in the public mode, the Android
screen lock does not record the entered password. As a result,
the security of the hidden password is ensured. In addition,
after the hidden mode is off, the RAM should be cleared to
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prevent information leakage from RAM. To achieve this goal,
we only support fast switching from the public mode to the
hidden mode. The user has to reboot the phone to switch from
the hidden mode to the public mode, so as to clear the infor-
mation of the hidden data in the RAM.

6.1.4. NFC-related issues
It would not weaken the security features of MobiPluto due to
the use of NFC cards. Since the deniability provided by hidden
volumes is already discussed, we focus on the impacts of
deniability introduced by NFC cards, including the assisting ap-
plication, the card key in the encryption footer, and the
operation that reads data from the card. First, the existence
of the hidden card cannot be inferred by the access to the decoy
card. The user could easily deny the existence of the hidden
NFC card, as well as the hidden storage. Even in a critical
situation that the leakage of sensitive data leads to severe
consequences, the user could dispose or destroy the hidden
NFC card to prevent the adversary from having access to any
sensitive data. Users can retrieve the data in hidden storage
once they obtain the backup cards, which are easy to make with
the help of our assisting application. Regarding the card key
in encryption footer, we use the encrypted key bytes as the
card key. We do not modify the encryption footer at all, so it
would not decrease deniability. As for the operations, the decoy
card and hidden card are initialized in the same way. There-
fore, accesses to the decoy card and the hidden card are
indistinguishable.

6.1.5. Cloning
Cloning is one of the most serious threats to card-based
systems. If the hidden card is cloned before the adversary
obtains the mobile device, the adversary can access the hidden
storage once he/she obtains the mobile device. To prevent a
card from being cloned, we can adapt two anti-cloning pre-
cautions. First, the access to the password stored on the card
is protected properly by the card key that is 128 bits long. Even
if the adversary could forge a card of the same unique ID as
our original card using the state-of-art techniques (Kasper et al.,
2010), he/she cannot have access to our deniable storage due
to the absence of the card key. Second, we use DESFire EV1 to
prevent the non-invasive side-channel attack. This attack ex-
tracts secret information from contactless cards by measuring
the electromagnetic emanations of a card while it carries out
a cryptographic operation (Kasper et al., 2009). DESFire EV1 cards
in our implementation are not affected by such an attack. As
a consequence, it is not practical for the adversary to produce
a cloned card to access our deniable system.

6.1.6. Eavesdropping
To prevent eavesdropping, a session key is generated during
the three-pass authentication before the data transit begins.
The communications in the establishment procedure of the
session key are encrypted by the card key. This is configured
during the initialization in a secure and isolated environ-
ment. Moreover, the card key is never transferred outside the
card. It is the key number that is transited from the device to
the card. The key number can be set to any number between
0 and 13 during the initialization, which is meaningless to the
adversary. As such, the establishment message does not leak

any information about Ra, Rb, and hence the session key. The
subsequent communication is encrypted by this session key.
In addition, there is little chance for the adversary to carry out
the ciphertext-only attack, because the session key is differ-
ent after each authentication.

6.2. Performance evaluation

6.2.1. Throughput performance
The main difference between MobiPluto and the default Android
FDE is that MobiPluto uses 1) XTS-AES and 2) thin volumes,
so we intend to understand how these two points impact the
performance. We use three experiments to understand the per-
formance differences among 1) the default Android FDE, 2) the
XTS Android FDE (i.e., only replace the CBC-AES of Android FDE
with XTS-AES), 3) the public mode of MobiPluto, 4) and the PDE
mode of MobiPluto. We conduct experiments on the internal
storage of an LG Nexus 4. We use a popular Linux command
line tool, “dd”, to measure the storage performance of the above
four systems. For the write speed, we execute the command,
“time dd if=/dev/zero of=test.dbf bs=400M count=1

conv=fdatasync”. It measures the time for writing a 400 MB
file to the storage. In addition, we use “time dd if=234.mp4

of=/dev/null bs=400M” to measure the read speed. Here
“234.mp4” is a multimedia file and its size is 3 GB. Note that
“dd” command tests the sequential I/O performance. Addi-
tionally, we use a popular benchmark, Bonnie++ (Coker, 2009),
to test the sequential I/O operations. We conduct each experi-
ment 10 times, and the average results and standard deviations
are shown in Fig. 5. We can see that the XTS-AES has a small
impact on the read speed, and the use of thin volumes has little
influence on the performance.

6.2.2. Fast switching performance
To test the performance of the fast switching mechanism, we
record and analyze the time for switching from the public mode
to the hidden mode. By reading the system logs, we obtain the
details about the switching time. We repeat the experiment 10
times and the results show that the average switching time
is less than 10 s. Specifically, the switching process includes

Fig. 5 – Average throughput and standard deviation in KB/s
(B: Bonnie++).
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three main steps: password verifying, volume switching and
Android framework restarting. It takes the system 0.57 ± 0.03 s
to verify the password and 3.21 ± 0.24 s to switch the volume.
Meanwhile, it takes the system 6.19 ± 0.16 s to restart the
Android framework. In total, the system needs 9.97 ± 0.18 s to
switch from the public mode to the hidden mode. Previous so-
lutions (Skillen and Mannan, 2013, 2014; Yu et al., 2014) all
require rebooting to switch modes which is time-consuming.
To reboot the phone, a user should first shutdown the phone,
which usually needs about 16 s on an LG Nexus 4. After that,
the user turns on the phone and the phone will show an in-
terface for the user to enter the password. This usually needs
about 33 s on an LG Nexus 4 phone. After the user enters the
hidden password, the system boots into the hidden mode, which
needs about 13 s. In total, it takes the previous solutions more
than 1 minute to switch the modes. Our solution does not need
to reboot the phone and the switching time of our system is
less than 10 seconds.

6.2.3. NFC performance
To understand the performance impact due to the use of NFC
cards, we record and analyze the time for reading passwords
from NFC cards. By reading the logs of the system, we can get
the details about the reading time. We repeat the experiment
10 times and the results are shown in Table 1, where Android-
NFC means the time interval between the moment when the
system detects the NFC card and the moment when the system
dispatches the operation to our application. It takes 0.13 ± 0.03 s.
Then the keys are read from the encryption footer, which
takes 0.06 ± 0.03 s. After the keys are obtained, the system con-
ducts a two-round authentication with the NFC card. Each
authentication takes about 0.07 s. Then the system reads the
password from the NFC card, which takes 0.12 ± 0.04 s. Note
that the password is encrypted and the decryption process takes
0.05 ± 0.02 s. The total time for reading the password from the
NFC card is 0.50 ± 0.06 s. If the user needs to type the pass-
word when rebooting the system, it takes about 0.56 s to type
each character of the password (Von Zezschwitz et al., 2014).
If the length of the password is 16, it will take about 9 s to type
the password. However, if the user uses the NFC card, it just
takes about 0.5 s. A more intuitive comparison is shown in Fig. 6.

7. Related work

Deniable encryption is an emerging security paradigm in
network communications (Canetti et al., 1997), disk storage,
cloud storage (Gasti et al., 2010), etc. In disk storage, most of
the existing work relies on either steganography or hidden
volumes to achieve deniability.

7.1. Steganography-based

Anderson et al. (1998) propose the first file encryption scheme
with PDE support. They present two solutions: Hiding blocks
within cover files and hiding blocks within random data.
However, both solutions are not suitable for performance-
sensitive mobile devices due to high storage and I/O overheads.
StegFS (McDonald and Kuhn, 2000) is a deniable-encryption
version of the work of Anderson et al. (1998). It uses the second
approach in Anderson et al. (1998) to work on Ext2 file system.
However, the existence of the modified Ext2 driver and the
external block table may expose the PDE system to the adver-
sary. In addition, the disk usage rate is low due to the collision
avoidance. Pang et al. (2003) propose a different design that
blocks used by hidden files are marked as occupied in the
bitmap, and it uses “abandoned blocks” and “dummy blocks”
to achieve deniability. Unfortunately, their design is disk space
inefficient.

7.2. Hidden volumes-based

FreeOTFE (2017) and TrueCrypt (2012) are two well-known PDE
tools relying on hidden volumes. Compared to TrueCrypt,
MobiPluto decouples file system from the underlying storage
medium, achieving file-system-friendly feature. Mobiflage
(Skillen and Mannan, 2013, 2014) builds the first PDE scheme
for mobile devices. It is implemented in two versions: one for
FAT32 file system in external storage (Skillen and Mannan, 2013),
and the other for Ext4 file system in internal storage (Skillen
and Mannan, 2014).The FAT32 version is not suitable for mobile
devices without external storage; the Ext4 version needs to sig-
nificantly modify Ext4 file system that introduces a large attack
surface against PDE. MobiHydra (Yu et al., 2014) improves
Mobiflage by introducing multi-level deniability and shelter
volume to store sensitive data temporarily. In Table 2, we provide
a comparison among PDE systems implemented for mobile
devices.

Blass et al. (2014) present HIVE, a desktop PDE scheme
that can defend against a multiple-snapshot adversary. HIVE
relies on write-only oblivious RAM, which suffers from a high
performance overhead.

Table 1 – Time for getting the password from the NFC
card.

Action Android-NFC Read Key Session Key

Time 0.13 ± 0.03 s 0.06 ± 0.03 s 0.07 ± 0.02 s

Action Read Password Decrypt Password Total

Time 0.12 ± 0.04 s 0.05 ± 0.02 s 0.50 ± 0.06 s

Fig. 6 – Time for entering passwords.
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7.3. Others

Ragnarsson et al. (2012) propose to use thin provisioning to
provide deniability. However, their solution requires significant
modifications of thin provisioning. In addition, they do not
provide any proof-of-concept implementation. Peters et al. (2015)
introduce DEFY, a deniable encrypted file system based on
YAFFS (2016). DEFY is the first deniable file system specifi-
cally designed for flash-based, solid-state drives. It follows a
log-structured design, motivated by the technical constraints
of flash memory.

8. Conclusion

In this paper, we present MobiPluto, a user-friendly PDE solu-
tion for modern mobile devices. MobiPluto utilizes thin
provisioning to build an additional layer that can transform
the non-sequential allocation on the thin volumes to sequen-
tial allocation on the underlying storage medium. This renders
it feasible to achieve file-system-friendly PDE using hidden
volumes. In addition, we introduce a fast switching mecha-
nism which can support switching to the hidden mode within
10 seconds. This is beneficial since it allows the user to capture
the sensitive information in time from the hidden mode. We
also incorporate NFC technology to improve MobiPluto’s us-
ability and deniability. We implement a prototype of MobiPluto
on an LG Nexus 4 Android phone and our extensive evalua-
tions show that MobiPluto only introduces a small performance
overhead.
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