KShot: Live Kernel Patching with
SMM and SGX

IEEE/IFIP DSN 2020 (Runner-up Best Paper Award)

Lei Zhou!?*, Fengwei Zhang ' **, Jinghui Liao 3, Zhenyu Ning?, Jidong Xiao*,

Kevin Leach®, Westley Weimer®, Guojun Wang®

' SUSTech, China
? Central South University, China
3 Wayne State University, USA
* Boise State University, USA
> University of Michigan, USA
° Guangzhou University, China

* Work was done while visiting COMPASS lab at SUSTech; ** The corresponding author

Outline

* Introduction and Background

e Architecture of KShot
* Design and Implementation
 FEvaluation: Eftectiveness and Performance

e (Conclusion

Why Need Patch the Kernel

user
3
D«zl?
Online services Non-interruptible App N
Vulnerabilities cause
attacks.
Need to fix !

Patching Mechanism

Traditional Update

WINDOWS UPDATE Ubuntu Updater

« RED HAT @ymlg!mmm

Live Patching ,
ORACLE
Linux | Ksplice s

Canonical Livepatch

@ kpatch . KkGraft
debian 'SUSE

All Resources from Internet

Rolling Update

r—-————— """ —-"\"-"—-—"\—-"—"—-"—"—-"—"—-"————— — =
| Deploying to 74 targets — 15 (20%) at a time. Fulmumm - ‘ |
| sssssssss |
| 4 EEEER a |
23 EEEEEEEEE 0
e Zerostack Coud
TEESRHHHHHHHHEEEE 00) |
| cos | (D Wi |
| [vmz | (VM
| L Zhosen 4 ‘ |

Users may unwilling to stop the runtime
system, even need to patch kernel.

So, they choose kernel-based live patching.

But what if the kernel is compromised?

Challenges: Security

1. To patch the kernel, need to trust the
kernel first!

That's a trap if the compromised kernel is
against the patching!

Challenges: Resource Overhead

2. Overhead on Live patching may be
larger than Restart

Kernel-based Live Patching needs to store
and restore the current system state

Reliable Solution

Using Trusted and Isolated Execution
Environment live patches the kernel without
interrupting the target system!

TEE Background: SGX and SMM

Intel SGX system: A
Provide Trust

Environment in User

level

eve Y

Applications SGX enclave

User mode

Supervisor mode

Intel SMM system: A

S
Hypervisor Strong isolation,
which cannot be
goitviaf _____________ accessed by Host
——————— J
Hardware
DRAM

Main CPU

Outline

* Introduction and Background

* Architecture of KShot

* Design and Implementation

* Evaluation: Effectiveness and Performance

e (Conclusion

High-level Architecture of KShot

System DRAM
SMRAM Application
(D Patch transfer
Switch
SMM 4'/® — I DERS
" Enclave Patch
Handler — — —— Server
® Resume [~ °°"~"7=7=7°79/7°
@ Live Kernel
patching
Reserved Memory ® Patch
for Live Patching pre-process

Outline

* Introduction and Background

e Architecture of KShot
* Design and Implementation
 FEvaluation: Eftectiveness and Performance

e (Conclusion

SGX-based Patch Preparation

SGX enclave

Remote Patch

Server

Function list

Binary Text

Patch 1

——\
—

Patch2

Patchi

\/\

Symbol table

0xc1000000 T _text

Patch structure

0xc1818000 D _sdata

sequence

kernel version

> patch version

payload

Call graph

Reseverd kernel
memory
mem_RW

mem_W

mem_E

1 Reserve an isolated memory space.

2 Design a pre-preparing module
In SGX enclave.

SGX-based Patch Preparation

SGX enclave

Symbol table 3 Check the input binary patch.

0xc1000000 T _text

Patch structure
0xc1818000 D _sdata sequence
kernel version Bina ry Code
Patch \ h .
preprocess patch version <SYSC_kill>:
. 55 : begin of sysc_kill
payload 89 eb5

E8 0C 74 35 00 : ftrace instruction

_______________________ BF FD FF FF FF
Call graph 74 3D

4 Modify the effected instruction: like branch. | s rc Fr_rr FE _|E

O e ol ol o o i .. sinstructions from
83 FE FF i kill_something_info
74 70 :

85 Fo6

5 Final patch was encrypted and sent to reserved |
share memory. 3 " end of sysc_kill

SMM-based Live Patching

Integrity checking
/\
SMM [h
Switch
Get binary Decrypt patch Ver.ify pa'Fches
patches text integrity
Reset
jump instruction Xl Change value in
<+— J p <4+— executable <+ g
in target Binarv oatch Kernel data/bss
SMM memory P
Resume e !
\"4
patching

The workflow of patching in SMM handler.

Also, it is easy to rollback and update the patch with the similar operations.

Outline

* Introduction and Background

* Architecture of KShot

* Design and Implementation

* Evaluation: Effectiveness and Performance

e (Conclusion

Evaluation

The test environment platform:

v' real-world patches from the Common Vulnerabilities and Exposures (CVE) Database.
v" analyzed 267 such vulnerabilities for Linux kernels 3.14 and 4.4.

v" Intel Core i7 CPU (supporting SGX and SMM) with 16GB memory.

v’ a combination of Coreboot with a SeaBIOS payload as the system BIOS.

v Ubuntu 14.04 and 16.04 using kernel versions 3.14 and 4.4.

_\\

/x AN
. o (| ikf}j_‘;::): \
Evaluation: Effectiveness and Performance .7
While deploying KShot, we consider three research questions:
= RQ1. Can KShot correctly apply kernel patches?

" RQ2.What is KShot’s performance overhead?

" RQ3. How does KShot compare to existing approaches?

RQ1. Can KShot correctly apply kernel patches?

CVE Number Affected Functions Size Type*
CVE-2014-01961 n_tty_write 86 1
CVE-2014-3687! Sctp-chunk_pending, 6 12
ctp_assoc_lookup_asconf_ack
Vmx_vcpu_run,
CVE-2014-3690' vmes host crd, %1 3 We randomly selected 30 of those 214 patches.
vmx_set_constant_host_state
‘ 1 - . .
CVE-20144157° current thread_info 5 2 Part of experimental results shown in above table.
CVE-2014-5077 sctp_assoc_update 98 1
CVE-2014-52061 do_remount 34 2
CVE-2014-78421 handle_emulation_failure 16 1
CVE-2014-8133! set_tls_desc, 81 12
regset_tls_set
CVE-2016-58292 hiddev_ioctl_usage 119 1
2 assoc_array_insert-
CVE-2016-7914 _into_terminal_node 330 1
CVE-2016-79162 environ_read 63 1
CVE-2017-63471 2 ip_cmsg_recv_checksum 15 2
CVE-2017-89251 2 omninet_open 9 2
CVE-2017-169942 walk_page_range 27 1
CVE-2017-170532 init_new_context 13 2
shash_no_setkey,
CVE-2017-1750612 hmacercate o 12 KShot can correctly apply kernel patches.
crypto_shash_alg_has_setkey
key_alloc,
CVE-2017-18270'.2 install_user_keyrings, 273 1.2
join_session_keyring
CVE-2018-101241 2 Kill_something_info, 510 12

sys_kill

* affects Linux 3.14. < affects Linux 4.4. * indicates patch type

RQ2. What is KShot’s performance overhead?

= SGX-based pre-preparation introduces extra overhead, but does not interrupt the normal system.

= SMM-based patching causes a very short pause, and the normal system state stays the same.

Fetch mmm Preprocess il Restore

CVE-2017-18270

CVE-2017-16994

CVE-2016-5696

CVE-2016-2143

CVE-2015-7872

CVE-2014-4608

Time (ps)

SGX-based patch preparation time.

m Keygen mm Patch Switch

CVE-2017-18270
CVE-2017-16994
CVE-2016-5696
CVE-2016-2143
CVE-2015-7872

CVE-2014-4608

| | | | | | | | |

0 5 10 15 20 25 30 35 40 45

Time (ps)

SMM-based live patching time.

Time overhead in each step of real CVE case live patching

50

RQ3. How does KShot compare to existing approaches?

Comparison with non-kernel binary patching.

Kernel Dependency Untrusted OS Applicability

Dyninst [24] v X userspace
EEL [10] v X userspace
Libcare [25] v X userspace
Kitsune [59] v X userspace
PROTEOS [26] v X kernel
KSHOT X v kernel

We can find that only KShot is kernel independent and useable in Untrusted OS

RQ3. How does KShot compare to existing approaches?

Comparison with kernel patching systems.

Type Downtime Untrusted OS ~ Memory
KUP [8] kernel 3s/kernel X >30G
KARMA [9] instruction 5pus/patch! X lua engine
kpatch [10] function 45.6ms/patch! X 16G
KSHOT function 50ps/patch? v [8M

1 for an average-sized patch of less than 1KB

The performance of KShot is better

Outline

* Introduction and Background

* Architecture of KShot

* Design and Implementation

* Evaluation: Effectiveness and Performance

e Conclusion

Conclusion

* KShot -secure and efficient framework for kernel patching
— Leveraging Intel SMM.
— Leveraging Intel SGX.
— Against indicative kernel vulnerabilities.

* Application scenarios
— Compromised Hypervisor, OS kernels.
— Without external checkpoint-and-restore resources.

% Introducing low overhead and a small trusted code base

Thank You for Your Attention!
Questions?

zhangfw(@sustech.edu.cn

http://cse.sustech.edu.cn/faculty/~zhangfw/

[m] iy [w]

[=]

mailto:zhangfw@sustech.edu.cn
http://cse.sustech.edu.cn/faculty/~zhangfw/

Backup Slides

KShot Design & Implementation

» SGX-based Patch Preparation
" SMM-based Live Patching

» Patching Protection

Identity the Patch Function

We assume we can get the trusted patch source code.
The patch case for CVE-2017-17806

hmac_create

Vulnerable functions are defined with three types:
et s s Type 1: non-inline function,

— '\ Type 2: inline function,
/ ﬁ " Type 3: special case: data structure changed function.

crypto_check _attr_type

shash no_setkey hmac_import

Type 2
hamec_ctx

Typel and Type 2 are shown in such case

Finding the final target function for patching is
different in each type.

Target Function Analysis (T 4/

With knowing a vulnerable function, need to find the patching function:
= 1 get the binary kernel code through compiling the kernel source.
= 2 |ocate the vulnerable instruction segments.

» 3 identify the patching-needed function.

KShot Design & Implementation

* Binary Patch Preparation
» SGX-based Patch Preparation
" SMM-based Live Patching

Patching Protection

Malicious Patch Reversion

* SMM-based kernel protection.
* Introspect regions of memory overwritten with trampoline instructions.

Denial-of-service attacks

* Generally difficult to defend.
* |dentify the memory written events with SMM and remote server.

