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Why Need Patch the Kernel
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Patching Mechanism
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Users may unwilling to stop the runtime
system, even need to patch kernel.

So, they choose kernel-based live patching.

But what if the kernel is compromised?




Challenges: Security

1. To patch the kernel, need to trust the
kernel first!

That's a trap if the compromised kernel is
against the patching!



Challenges: Resource Overhead

2. Overhead on Live patching may be
larger than Restart

Kernel-based Live Patching needs to store
and restore the current system state



Reliable Solution

Using Trusted and Isolated Execution
Environment live patches the kernel without
interrupting the target system!



TEE Background: SGX and SMM
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High-level Architecture of KShot
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SGX-based Patch Preparation

SGX enclave

Remote Patch
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1 Reserve an isolated memory space.

2 Design a pre-preparing module
In SGX enclave.



SGX-based Patch Preparation

SGX enclave

Symbol table 3 Check the input binary patch.

0xc1000000 T _text

Patch structure
0xc1818000 D _sdata sequence
kernel version Bina ry Code
Patch \ h .
preprocess patch version <SYSC_kill>:
. 55 : begin of sysc_kill
payload 89 eb5
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4 Modify the effected instruction: like branch. | s rc Fr_rr FE _|E
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5 Final patch was encrypted and sent to reserved |
share memory. 3 " end of sysc_kill




SMM-based Live Patching

Integrity checking
/\
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The workflow of patching in SMM handler.

Also, it is easy to rollback and update the patch with the similar operations.
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Evaluation

The test environment platform:

v' real-world patches from the Common Vulnerabilities and Exposures (CVE) Database.
v" analyzed 267 such vulnerabilities for Linux kernels 3.14 and 4.4.

v" Intel Core i7 CPU (supporting SGX and SMM) with 16GB memory.

v’ a combination of Coreboot with a SeaBIOS payload as the system BIOS.

v Ubuntu 14.04 and 16.04 using kernel versions 3.14 and 4.4.
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Evaluation: Effectiveness and Performance .7
While deploying KShot, we consider three research questions:
= RQ1. Can KShot correctly apply kernel patches?

" RQ2.What is KShot’s performance overhead?

" RQ3. How does KShot compare to existing approaches?



RQ1. Can KShot correctly apply kernel patches?

CVE Number Affected Functions Size  Type*
CVE-2014-01961 n_tty_write 86 1
CVE-2014-3687!  Sctp-chunk_pending, 6 12
ctp_assoc_lookup_asconf_ack
Vmx_vcpu_run,
CVE-2014-3690'  vmes host crd, %1 3 We randomly selected 30 of those 214 patches.
vmx_set_constant_host_state
‘ 1 - . .
CVE-20144157°  current thread_info 5 2 Part of experimental results shown in above table.
CVE-2014-5077 sctp_assoc_update 98 1
CVE-2014-52061 do_remount 34 2
CVE-2014-78421 handle_emulation_failure 16 1
CVE-2014-8133! set_tls_desc, 81 12
regset_tls_set
CVE-2016-58292 hiddev_ioctl_usage 119 1
2 assoc_array_insert-
CVE-2016-7914 _into_terminal_node 330 1
CVE-2016-79162 environ_read 63 1
CVE-2017-63471 2 ip_cmsg_recv_checksum 15 2
CVE-2017-89251 2 omninet_open 9 2
CVE-2017-169942 walk_page_range 27 1
CVE-2017-170532 init_new_context 13 2
shash_no_setkey,
CVE-2017-1750612  hmacercate o 12 KShot can correctly apply kernel patches.
crypto_shash_alg_has_setkey
key_alloc,
CVE-2017-18270'.2  install_user_keyrings, 273 1.2
join_session_keyring
CVE-2018-101241 2 Kill_something_info, 510 12

sys_kill

* affects Linux 3.14. < affects Linux 4.4. * indicates patch type



RQ2. What is KShot’s performance overhead?

= SGX-based pre-preparation introduces extra overhead, but does not interrupt the normal system.

= SMM-based patching causes a very short pause, and the normal system state stays the same.
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RQ3. How does KShot compare to existing approaches?

Comparison with non-kernel binary patching.

Kernel Dependency  Untrusted OS  Applicability

Dyninst [24] v X userspace
EEL [10] v X userspace
Libcare [25] v X userspace
Kitsune [59] v X userspace
PROTEOS [26] v X kernel
KSHOT X v kernel

We can find that only KShot is kernel independent and useable in Untrusted OS



RQ3. How does KShot compare to existing approaches?

Comparison with kernel patching systems.

Type Downtime Untrusted OS ~ Memory
KUP [8] kernel 3s/kernel X >30G
KARMA [9] instruction  5pus/patch! X lua engine
kpatch [10] function 45.6ms/patch! X 16G
KSHOT function 50ps/patch? v [8M

1 for an average-sized patch of less than 1KB

The performance of KShot is better
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Conclusion

* KShot -secure and efficient framework for kernel patching
— Leveraging Intel SMM.
— Leveraging Intel SGX.
— Against indicative kernel vulnerabilities.

* Application scenarios
— Compromised Hypervisor, OS kernels.
— Without external checkpoint-and-restore resources.

% Introducing low overhead and a small trusted code base
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Identity the Patch Function

We assume we can get the trusted patch source code.
The patch case for CVE-2017-17806

hmac_create

Vulnerable functions are defined with three types:
et s s Type 1: non-inline function,

— '\ Type 2: inline function,
/ ﬁ " Type 3: special case: data structure changed function.

crypto_check _attr_type

shash no_setkey hmac_import

Type 2
hamec_ctx

Typel and Type 2 are shown in such case

Finding the final target function for patching is
different in each type.



Target Function Analysis (T 4/

With knowing a vulnerable function, need to find the patching function:
= 1 get the binary kernel code through compiling the kernel source.
= 2 |ocate the vulnerable instruction segments.

» 3 identify the patching-needed function.



KShot Design & Implementation

* Binary Patch Preparation
» SGX-based Patch Preparation
" SMM-based Live Patching



Patching Protection

Malicious Patch Reversion

* SMM-based kernel protection.
* Introspect regions of memory overwritten with trampoline instructions.

Denial-of-service attacks

* Generally difficult to defend.
* |dentify the memory written events with SMM and remote server.



