
KShot: Live Kernel Patching with
SMM and SGX

IEEE/IFIP DSN 2020 (Runner-up Best Paper Award)

Lei Zhou! " ∗, Fengwei Zhang ! ∗∗, Jinghui Liao $, Zhenyu Ning!, Jidong Xiao%,
Kevin Leach&, Westley Weimer&, Guojun Wang'

! SUSTech, China
" Central South University, China
#Wayne State University, USA
$ Boise State University, USA
% University of Michigan, USA
& Guangzhou University, China

* Work was done while visiting COMPASS lab at SUSTech; ** The corresponding author

Outline

• Introduction and Background

• Architecture of KShot

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

Why Need Patch the Kernel

user

Device

…

𝑓𝑢𝑛𝑐 𝑝

kernel

Online services Non-interruptible App

…

Vulnerabilities cause
attacks.

Need to fix !

𝑓𝑢𝑛𝑐 𝑞
𝑓𝑢𝑛𝑐 𝑠

buggy

Patching Mechanism

Ubuntu Updater

Canonical Livepatch

kpatch kGraft

Traditional Update

All Resources from Internet

Live Patching

Rolling Update

…

…

Users may unwilling to stop the runtime
system, even need to patch kernel.

So, they choose kernel-based live patching.

But what if the kernel is compromised?

Challenges: Security

1. To patch the kernel, need to trust the
kernel first!

That’s a trap if the compromised kernel is
against the patching!

Challenges: Resource Overhead

2. Overhead on Live patching may be
larger than Restart

Kernel-based Live Patching needs to store
and restore the current system state

Reliable Solution

Using Trusted and Isolated Execution
Environment live patches the kernel without

interrupting the target system!

TEE Background: SGX and SMM

Intel SMM system:
Strong isolation,
which cannot be
accessed by Host

Intel SGX system:
Provide Trust

Environment in User
level

DRAM

Main CPU SGX CPU

Hardware
Software

EPC

Intel Chipset

Supervisor mode
User mode

Applications

Hypervisor kernel

SMRAM

SGX enclave

Outline

• Introduction and Background

• Architecture of KShot

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

High-level Architecture of KShot

Outline

• Introduction and Background

• Architecture of KShot

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

SGX-based Patch Preparation

1 Reserve an isolated memory space.

2 Design a pre-preparing module
In SGX enclave.

sequence

kernel	version

patch	version

..

payload

Symbol	table

Function	list

Remote	Patch	
Server Patch	structure

mem_W

Reseverd	kernel	
memory

…
0xc1000000		T			_text
…
0xc1818000		D	_sdata
…

Call	graph

Binary	Text

Patch	1

Patch	2

…

Patch	i

mem_RW

mem_E

SGX	enclave

SGX-based Patch Preparation

: begin of sysc_kill

: ftrace instruction

:instructions from
kill_something_info

:end of sysc_kill

Binary Code
sequence

kernel	version

patch	version

..

payload

Symbol	table

Patch	structure

…
0xc1000000		T			_text
…
0xc1818000		D	_sdata
…

Call	graph

SGX	enclave

Patch
preprocess

4 Modify the effected instruction: like branch.

3 Check the input binary patch.

5 Final patch was encrypted and sent to reserved
share memory.

SMM-based Live Patching

Decrypt	patch
	text

Verify	patches
	integrity

Change value in
Kernel data/bss

Reset
jump instruction

in target
memory

SMM	
Switch

Get binary
patches

SMM	
Resume

Load
executable

Binary patch

Integrity checking

patching

The workflow of patching in SMM handler.

Also, it is easy to rollback and update the patch with the similar operations.

Outline

• Introduction and Background

• Architecture of KShot

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

Evaluation

The test environment platform:

ü real-world patches from the Common Vulnerabilities and Exposures (CVE) Database.

ü analyzed 267 such vulnerabilities for Linux kernels 3.14 and 4.4.

ü Intel Core i7 CPU (supporting SGX and SMM) with 16GB memory.

ü a combination of Coreboot with a SeaBIOS payload as the system BIOS.

ü Ubuntu 14.04 and 16.04 using kernel versions 3.14 and 4.4.

Evaluation: Effectiveness and Performance

While deploying KShot, we consider three research questions:

§ RQ1. Can KShot correctly apply kernel patches?

§ RQ2. What is KShot’s performance overhead?

§ RQ3. How does KShot compare to existing approaches?

RQ1. Can KShot correctly apply kernel patches?

We randomly selected 30 of those 214 patches.

Part of experimental results shown in above table.

… … ...

KShot can correctly apply kernel patches.

RQ2. What is KShot’s performance overhead?

§ SGX-based pre-preparation introduces extra overhead, but does not interrupt the normal system.
§ SMM-based patching causes a very short pause, and the normal system state stays the same.

SGX-based patch preparation time. SMM-based live patching time.

Time overhead in each step of real CVE case live patching

We can find that only KShot is kernel independent and useable in Untrusted OS

RQ3. How does KShot compare to existing approaches?

Comparison with non-kernel binary patching.

RQ3. How does KShot compare to existing approaches?

Comparison with kernel patching systems.

The performance of KShot is better

! for an average-sized patch of less than 1KB

Outline

• Introduction and Background

• Architecture of KShot

• Design and Implementation

• Evaluation: Effectiveness and Performance

• Conclusion

Conclusion

KShot -secure and efficient framework for kernel patching
— Leveraging Intel SMM.
— Leveraging Intel SGX.
— Against indicative kernel vulnerabilities.

Application scenarios
— Compromised Hypervisor, OS kernels.
— Without external checkpoint-and-restore resources.

Introducing low overhead and a small trusted code base

Thank You for Your Attention!
Questions?
zhangfw@sustech.edu.cn

http://cse.sustech.edu.cn/faculty/~zhangfw/

mailto:zhangfw@sustech.edu.cn
http://cse.sustech.edu.cn/faculty/~zhangfw/

Backup Slides

KShot Design & Implementation

§ Binary Patch Preparation

§ SGX-based Patch Preparation

§ SMM-based Live Patching

§ Patching Protection

Identify the Patch Function

Type1 and Type 2 are shown in such case Finding the final target function for patching is
different in each type.

Type 1

Type 1

Type 2

Vulnerable functions are defined with three types:
Type 1: non-inline function,
Type 2: inline function,
Type 3: special case: data structure changed function.

We assume we can get the trusted patch source code.
The patch case for CVE-2017-17806

Target Function Analysis

With knowing a vulnerable function, need to find the patching function:

§ 1 get the binary kernel code through compiling the kernel source.

§ 2 locate the vulnerable instruction segments.

§ 3 identify the patching-needed function.

KShot Design & Implementation

§ Binary Patch Preparation

§ SGX-based Patch Preparation

§ SMM-based Live Patching

§ Patching Protection

Patching Protection

• SMM-based kernel protection.
• Introspect regions of memory overwritten with trampoline instructions.

Malicious Patch Reversion

Denial-of-service attacks
• Generally difficult to defend.
• Identify the memory written events with SMM and remote server.

