
Alligator in Vest: A Practical Failure-Diagnosis Framework
via Arm Hardware Features

Yiming Zhang
Research Institute of Trustworthy

Autonomous Systems and
Department of CSE, SUSTech, China

The Hong Kong Polytechnic
University, China

Yuxin Hu
Southern University of Science and

Technology, China

Haonan Li
Southern University of Science and

Technology, China

Wenxuan Shi
Southern University of Science and

Technology, China

Zhenyu Ning∗
Hunan University, China

Southern University of Science and
Technology, China

Xiapu Luo∗
The Hong Kong Polytechnic

University, China

Fengwei Zhang
Southern University of Science and

Technology, China

ABSTRACT

Failure diagnosis in practical systems is difficult, and the main
obstacle is that the information a developer has access to is limited.
This information is usually not enough to help developers fix or
even locate the related bug. Moreover, due to the vast difference
between the development and production environments, it is not
trivial to reproduce failures from the production environment in
the development environment. When failures are caused by non-
deterministic events such as race conditions or unforeseen inputs,
reproducing them is even more challenging.

In this paper, we present Investigator, a failure diagnosis frame-
work for practical systems running on Arm. At runtime, Investi-
gator leverages the hardware tracing component called Embedded
Trace Macrocell (ETM) and a lightweight event capturer to collect
information with low overhead. With the collected trace and anal-
ysis, Investigator identifies the control and data flow related to
the cause of a failure, which helps developers in bug fixing. We
implemented a prototype of Investigator and evaluated it with
real-world bugs. The results show that Investigator diagnoses
these bugs effectively and efficiently while introducing a low per-
formance overhead at runtime.
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1 INTRODUCTION

Software failures in production environments are unavoidable, and
diagnosing them is highly important. It is unlikely that all failures
can be revealed before deploying a release to the production en-
vironment. Even if developers spend much effort on testing, they
merely decrease the probability of failure occurrence [49]. More-
over, non-deterministic events (e.g., race conditions or unforeseen
inputs) make concurrency bugs or sequential bugs more likely to
manifest [38, 39, 41]. Reproducing and fixing them is even more
challenging [63].

To diagnose a failure that occurred in the production environ-
ment, developers usually need to analyze the program statements re-
lated to the crash and identifywhat caused the program to crash [71].
To provide sufficient information facilitating the procedure, we ar-
gue that a practical failure diagnosis system in the production envi-
ronment can first record the execution flow of the target application
(e.g., control and data flow) and then analyze the application states
leading to failure according to the execution record. It should fulfill
the following three requirements. R1) Non-invasive: It should not
be intrusive to the production environment and can work without
the source code of target programs; R2) Low overhead: The run-
time overhead incurred should be low enough for the production
environment; R3) Complete: It should be able to provide a com-
plete execution flow of a target program, which is necessary since
using insufficient information may miss the root cause of failures.

https://doi.org/10.1145/3597926.3598106
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Record-and-replay [14, 56, 59, 69] is a typical system to diagnose
failures by reverse-execution debugging. However, one of the chal-
lenges in these systems [24, 25, 69] is that they do not fulfill R2
because the high performance overhead introduced by recording,
especially for a multithreading program [56]. Besides, they do not
meet R1, because they require OS modification [12, 20, 51] and
custom hardware [32, 53]. Other approaches [14, 29, 36] record
the execution flow by pervasive instrumentation of the source
code, which requires code modification and introduces high over-
head [36, 39]. Using dynamic instrumentation incurs even more
overhead [21, 54].

To provide efficient production support, the state-of-the-art fail-
ure diagnosis systems [18, 19, 38, 70, 71] usually take advantage
of modern hardware (e.g., Intel Processor Trace [60]) to record the
control flow of a program with low overhead. However, the stan-
dalone control flow is insufficient for failure diagnosis in complex
cases involving data. Therefore, the control flow is usually used
with a coredump [45] captured upon a program crash to infer the
data flow [18, 71]. Unfortunately, relying on the final crashed core-
dump to diagnose a failure related to non-deterministic events is
still difficult in practice, since the memory and registers involved in
the failure might be overwritten before the coredump is captured,
and thus do not fulfill R3 (an example is given in §2.2). Furthermore,
although failure diagnosis has been well studied on traditional x86
platforms [18, 19, 38, 70, 71], it is still an open problem on Arm
architecture.

In light of these limitations, we propose Investigator 1, a prac-
tical failure diagnosis framework on Arm to fulfill the three require-
ments. R1: Investigator diagnoses a binary program executing on
multi-thread environments by leveraging the off-the-shelf hardware
features on Arm, including ETM (Embedded Trace Macrocell) [5]
and PMU (Performance Monitoring Unit) [8], so that it requires
no modification to any hardware components or binaries in the
production environment. R2: Investigator records control flow
and timing information of a target program by cooperating with
the hardware-tracing component ETM, which imposes a low over-
head. Meanwhile, we minimize the size of recorded data generated
by ETM to simplify the tracing procedure. R3: With a novel ap-
proach that maintains the complete ETM trace, Investigator is
capable of reconstructing the entire control flow. Investigator
supports recovering the data flow via the collected record, and
finally completes the data flow.

To implement the whole process, we faced three technical chal-
lenges. C1: The ETM’s trace buffer (e.g., Embedded Trace Buffer
(ETB) [5]) is limited so that it will get fully occupied very quickly.
Furthermore, ETM cannot raise an interrupt when the trace buffer
is full. Thus, the trace can be frequently overwritten by subse-
quent program execution, causing trace loss. To address C1, we
design an approach to effectively and efficiently extract traces and
transfer them to non-volatile storage in a timely fashion with the
help of PMU. C2: The default timestamp generated by the ETM
is too coarse-grained to reflect the exact thread interleavings (i.e.,
non-deterministic event that lead to concurrency bugs) in multi-
thread environments. To handle C2, Investigator is equipped
with a novel technique that leverages a built-in hardware called

1What do you call an alligator in a vest? An investigator!

Countdown-Counter [5] to maximize the generation of timestamps.
Thus, Investigator can use the fine-grained timestamp to deter-
mine the thread interleaving causing concurrency bugs. C3: Since
ETM does not support data trace as Intel Processor Trace (PT) does
(i.e., ptwrite instruction), it is non-trivial to accurately recover
data flow with low overhead, especially considering the impacts
of non-deterministic events (e.g., unforeseen inputs). To tackle C3,
we reconstruct the data flow based on the control flow by forward
analysis with collected information. Specifically, Investigator em-
ploys a lightweight software-based mechanism to collect additional
records from non-deterministic events. We carefully classify the
non-deterministic events by considering their impact on recording
requirements and collect these effects with different strategies to
avoid incurring high runtime overhead or sacrificing the accuracy
of data flow.

We implemented a prototype of Investigator and evaluated
it with the aforementioned requirements in mind. The evaluation
results show that Investigator recovers both the control flow
and data flow with an accuracy of more than 99%. We also used
Investigator to diagnose 17 failed programs (7 code segments
reconstructed from applications and 10 real-world applications).
The results show that Investigator effectively identifies the root
cause of the failures caused by concurrency and sequential bugs
with a runtime overhead of up to 3.88% on average.

In summary, we make the following contributions:
• We present a practical failure diagnosis framework named
Investigator. It leverages Arm hardware features (e.g., ETM
and PMU) to efficiently reconstruct execution pertaining to
failures. Investigator works with unmodified binaries on
Arm platforms without hardware modification.

• Investigator achieves high performance and performs ac-
curate execution flow recovery, which provides developers
with sufficient information for root cause analysis.

• We implement a prototype of Investigator and evaluate it
with real-world applications. The results show that Inves-
tigator successfully diagnoses various types of failures in
these applications with up to 3.88% runtime performance
overhead on average.

2 BACKGROUND AND MOTIVATION

2.1 Embedded Tracing Macrocell

Embedded Tracing Macrocell (ETM) is a trace component in Arm
architecture [5] that generates instruction trace to describe all the
executed instructions on a processor. Moreover, additional informa-
tion such as timestamps can be captured along with the instruction
trace [10]. To facilitate the usage, ETM also provides a range of op-
tions such as filters (e.g., process ID and memory region filters) and
trace sinks (e.g., Embedded Trace Buffer (ETB), Embedded Trace
Router (ETR), and Trace Port Interface Unit (TPIU)). Moreover, ETM
only imposes 0.1% overhead in most cases and hardly impacts the
execution of applications [55]. As an embedded component inside
the processor, ETM is available in almost all Arm Cortex-A and
Cortex-M processors [3, 5]. Recent study [55] showed that ETM is
used in most popular smartphones and tablets based on Arm. Note
that data trace is not supported in both the ETMv4 equipped in the
Armv8-A architecture according to the Arm technical manual [5].
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1 / / Thread 1 : :
2 char b i g _bu f [ 6 4 ] ;
3 whi l e ( 1 )
4 r ead ( fd , b ig_bu f , 6 4 ) ;

5 / / Thread 2 : :
6 i n t t o t a l = 0 ;
7 i n t l en = 0 ;
8 char buf [ 1 5 ] ;
9 f o r ( s h o r t i = 0 ; i < 2 ; ++ i )
10 l e n = s t r l e n ( b i g _bu f ) ;
11 i f ( l en <15 )
12 s t r c p y ( buf , b i g _bu f ) ;
13 t o t a l += l en ;
14 a s s e r t ( t o t a l <30 )

Figure 1: Buffer overflow caused by data race.

2.2 A Motivating Example

Figure 1 demonstrates a typical concurrency bug related to a non-
deterministic event (syscall read) to show limitations of prior diag-
nosis systems. Assume that the loop (Line 10 to Line 13) in Thread
2 is executed twice. In the first iteration, the read of big_buf (Line
4) in Thread 1 is performed after the length check (Line 10 and Line
11) in Thread 2. The following strcpy (Line 12) in Thread 2 may
lead to a buffer overflow and overwrite variables len and total. In
the second iteration, no data race is involved, but the unpredictable
total overwritten in the first iteration might be larger than 30 after
the summation (Line 13) in Thread 2. This finally fails the assert
(Line 14) in Thread 2 and crashes the program.

Existing failure diagnosis systems that are purely based on con-
trol flow traces [17, 38] fail to diagnose this example, because they
do not provide data values, thus only applying at a subset of con-
currency bugs. Similarly, the state-of-art techniques in deployed
systems, which reconstruct data flow from a control flow trace and
a crashed coredump [18, 71], can only recover limited data values
in this example, because the memory and registers pertaining to
the failure are overwritten by subsequent control flow. Hence, it is
impossible to recover the corresponding data to identify root cause.

To overcome the limitations of existing techniques, we design
and implement a failure diagnosis framework Investigator. It
recovers control and data flow without incurring high overhead
during execution or sacrificing the accuracy of data flow. Investi-
gator is different from existing commercial tools (e.g., J-trace [64],
and Trace32 [7]) and has no extra hardware requirement (e.g., J-
LINK [65]).

3 DESIGN

In this section, we introduce the overview (§3.1) of Investiga-
tor. Then, we discuss the encountered main challenges and the
corresponding solutions (§3.2).

3.1 Overview

Investigator focuses on facilitating failure diagnosis via provid-
ing execution flow of a target program. Investigator requires no
modification to the target program in the production environment,
because it uses the hardware features and a lightweight software-
based mechanism to collect the execution traces of the target pro-
gram. To minimize the additional overhead, the control and data
flow recovery and the root cause analysis are conducted on the host
server rather than the Arm platform. More specifically, as shown
in Figure 2, Investigator consists of two stages: recording stage
and analysis stage.
(1) Recording Stage (§4). The recording stage contains three main
modules: An ETMmanager, a library hook, and a non-deterministic
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Figure 2: Overview of Investigator.

event capturer. The ETM manager controls the hardware features
(e.g., ETM and ETR) to trace the executed instructions. The library
hook inspects library functions invoked by the target program.
Whenever the target program starts, or a new thread is created,
its memory information in the corresponding status is extracted
to a coredump [45] (hereinafter referred to as the checkpoint). The
non-deterministic event capturer, another module, records the non-
deterministic events related to the target program. All recorded
information is saved to non-volatile storage and transferred to the
analysis stage on an offline server when a failure occurs.
(2) Analysis Stage (§5). In analysis stage performed in host server, a
control flow builder and a data flow builder reconstruct the control
and data flow with the information collected in recording stage,
respectively. Meanwhile, a root cause detector is responsible for
identifying the root cause of failure from the reconstructed flows
during analysis stage.
Deployment Scenario. We assume that the usage scenario of Inves-
tigator is to deploy it in the production environment for always-on
trace and offline analysis. In this scenario, Investigator can gather
more data about the reoccurring failure by leveraging frequent
failure reoccurrences in large scale deployments, similar to existing
production failure-diagnosis systems [28, 38, 39].

3.2 Design Challenges

Recall that Investigator is designed for production environment
to fulfill the three practical requirements discussed in §1 (Non-
invasive, Low overhead, and Complete). With this goal, Investiga-
tor faces the following design challenges.
C1) Loss of Instruction Trace. ETM relies on the capacity of on-
chip buffer for trace data storage, but ETM cannot raise an interrupt
when the buffer is full. Trace data will be frequently overwritten
once the buffer is full, leading to the loss of instruction trace. On
the one hand, it is common for a program to use standard libraries.
Tracing the library together with the program will increase the
size of ETM trace dramatically and consequently make the buffer
overwritten even worse. On the other hand, ignoring the library
might introduce inaccuracy in data flow recovery.
Solution of C1. Investigator carefully chooses the timing to
extract data from the trace buffer so that no trace is overwritten.
Moreover, Investigator uses a dedicated ETM configuration in
conjunction with software-based library record to collect the impact
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of library functions instead of tracing them. This design allows us
to keep sufficient information while introducing a low performance
overhead. More details are provided in §4.1 and §4.2.
C2) Uncertain Order of Executed Instructions. In Arm, each
CPU core has its own ETM, and each ETM is designed to trace the
instructions executed in its attached core. In a multi-core system,
it is not-trivial to determine the instruction order among different
cores. However, the instruction order is critical while diagnosing
failures caused by race conditions.
Solution of C2. We address this problem by forcing ETM to gener-
ate fine-grained timestamps. Although ETM provides a standard
configuration for the timestamp generation, the generated times-
tamp is still too coarse-grained in race conditions. We propose a
novel approach leveraging an event trigger to increase the times-
tamp generation frequency. More details are presented in §4.1 and
§5.
C3) Accurately Recover Data Flow with Low Overhead. Since
ETM does not support data trace as Intel PT does (i.e., ptwrite in-
struction), it is non-trivial to accurately recover data flow with low
overhead, especially considering the impacts of non-deterministic
events (e.g., unforeseen inputs). The non-deterministic events lead
to different execution results in various executions, which makes it
difficult to reproduce a failure that arisen in the production environ-
ment [62]. Existing solutions focus on functionality and introduce
heavy performance overhead [30, 31, 66, 67, 69], which prevents
them from being deployed in the production environment. For in-
stance, recent works [39, 56] insert instrumentation into the target
program source code or use ptrace [47] for the syscall effects. Nev-
ertheless, they bring a considerable overhead (e.g., up to 24× [56]).
Solution of C3. We address this problem by leveraging a light-
weight software-based mechanism to collect additional records
from non-deterministic events to help data flow recovery offline.
Investigator carefully classifies the non-deterministic events ac-
cording to their impact on record requirements. Then we design a
dedicated lightweight non-deterministic event capturer to collect
these effects with different strategies to avoid incurring high run-
time overhead or sacrificing the accuracy of data flow. The details
about the non-deterministic event capturer are presented in §4.3,
and the data recovery is described in §5, respectively.

4 RECORDING STAGE

4.1 ETM Manager

The hardware tracing component ETM supports high-performance
tracing [23, 55]. ETM Manager controls ETM to trace instructions
of the target program. To build a complete and accurate control
flow, we keep the ETM always-on for continuous trace to provide
sufficient records.
Accurate Tracing. As described in challenge C1, ETM cannot
raise an interrupt when the trace buffer is full. Thus, the trace can
be frequently overwritten by subsequent program execution. To
avoid trace loss caused by overwriting, we use timely interrupts
raised by hardware Performance Monitoring Unit (PMU) [8] to
extract the trace from buffer and save it to disk before the buffer
is full. Specifically, Investigator uses the event counter of PMU
to count the PMU_INST_RETIRED event indicating an instruction
executed by the processor to conservatively estimate the current

01 // The wrapper for the non-deterministic function calloc
02 void* calloc_wrapper (size_t x0, size_t x1){
03 void* ret = calloc(x0, x1);
04 record(__func__, ret); // save the result
05 return ret;}

01 // Emitted each time an asset swap occurs via the swap function
02 event Swap (
03 address indexed sender,
04 uint amount0In,
05 uint amount1In,
06 uint amount0Out,
07 uint amount1Out,
08 address indexed to);

01 function swap(address recipient, bool zeroForOne, int256
amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata
data) {

02 ...
03 // do the transfers and collect payment
04 ...
05 emit Swap(msg.sender, recipient, amount0, amount1,

state.sqrtPriceX96, state.liquidity, state.tick);}

01
02
03 btnView.setOnClickListener(new OnClickListener() {
04 @Override
05 public void onClick(View v) {
06 post(“user click:” + btnView.getText());
07
08 post(“user click:” + ((Button) v).getText());
09 }
11 })

01  Button btnView = findViewById(R.id.btn);
02
03 btnView.setOnClickListener(new OnClickListener() {
04 @Override
05 public void onClick(View v) {

Figure 3: An example of the generated wrapper for the non-

deterministic function.

size of the trace buffer while ETM is enabled. Once the number of
instructions hits a threshold (close to the buffer size), PMU raises an
interrupt (PMI) and notifies Investigator to drain trace from the
buffer in PMI handler. To further reduce the overhead of frequent
interrupt, we leverage another hardware component Embedded
Trace Router (ETR [5]) to allocate a dedicated custom-sized chunk of
physical memory (up to 4GB) as a high-capacity buffer to support
a tracing. To our empirical knowledge, an Arm instruction can
lead to at most 6 bytes of trace data. So a 4GB memory buffer
using ETR can support the execution of at least 7 hundred million
instructions. Also, considering that the PMI often comes with a
skid (less than 10 instructions [55]), the upper bound for PMU
is instruction number-10. Thus, the maximal value of the event
counter register Investigator sets can be 0xffffffff-upper bound.
Note that developers can adjust the size of the ETR and the PMU
boundary (e.g., 256MB in our Evaluation §6).
Fine-grained Timestamps. As discussed in the C2, to provide
accurate ETM trace in a multi-core environment, we configure
ETM to generate timestamps, which contain CPU clock timing in-
formation, together with the instruction trace. The key challenge
is the default generation frequency of the ETM timestamp is too
coarse-grained, which is insufficient to identify the order of instruc-
tions in race conditions. We notice that ETM is allowed to generate
timestamps in its trace whenever a special trace unit event [5] hap-
pens. Based on this observation, we leverage a built-in hardware
Countdown-Counter [5] within the Arm coresight components [9]
as an external source to trigger trace unit events to instruct ETM
timestamp generation. Since the Countdown-Counter can trigger a
trace unit event when the counter value reduces to 0, we configure
the initial value and reload value of the Countdown-Counter to be 0
to make this event happen all the time to maximize the timestamp
generation.
Filtered Tracing. To decrease the size of the trace, Investigator
instructs the ETM trace only the target process under analysis by
applying ETM’s context ID filter. Moreover, Investigator let the
ETM just trace the instructions executed in target’s code address
space via address range filter. Note that it is not trivial to reduce
the amount of ETM trace while achieving accurate data flow re-
covery because reducing the amount of ETM trace may miss the
information of non-deterministic events of syscalls and libraries. To
address the side-effect of non-deterministic events, we propose a
library hook for library functions (§4.2) and a lightweight software
capturer for syscalls (§4.3), respectively.

4.2 Library Hook

Library hooks are used to collect the impact of library functions as
described by C1. It is unnecessary to record all library functions.
We divide library functions into two categories: deterministic func-
tions and non-deterministic functions. A deterministic function
is a pure function such as strlen [27]. Deterministic functions
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Table 1: The classification of syscall.

Syscalls

Types
Example Feature Record Requirement

Reading Status getpid
The RS-Type syscalls read information related to system status.
The results of these syscalls may be transferred by the return value. We directly record the memory or register they changed.

Writing Status epoll_create
TheWS-Type syscalls change the status of the system, but do not
directly change the memory and registers of program. We ignore them unless they fail and return an error code.

Reading Content read The RC-Type read content from an external input. We choose to truncate the content and record only the first 256 bytes.

Writing Content write TheWC-Type syscalls write content to an external source. We consider that they would not affect the execution status of the target program.

are not required to be recorded, as their effects can be inferred by
function semantic information. Some functions such as calloc and
rand return a non-deterministic value. We mainly record such a
non-deterministic function to fix the gap that the data value can-
not be inferred. These non-deterministic functions are categorized
manually, Investigator uses library hooks to collect their effects.

Investigator hooks library functions by modifying the reloca-
tion process of dynamic linker ld.so. Specifically, Investigator
changes _dl_fixup in dl-runtime.c to make the dynamic linker
search our wrapper function on relocation. Inside the wrapper (e.g.,
Figure 3), it executes the original function and saves the execution
information.

Investigator compiles a wrapper library for common non-
deterministic functions in the standard library (e.g., malloc, rand,
calloc, etc.). Investigator also handles the functions that are im-
plemented through VDSO (e.g., clock_getres and gettimeofday).
With library hook, Investigator dumps target program’s memory
information (i.e., checkpoints) in the key status (e.g., program start,
or a new thread is created) for later data flow recovery (§5). The
checkpoints are generated by gcore [46].

Adding wrappers for more library functions is as easy as provid-
ing the function name and prototype. Investigator automatically
generates wrappers and integrates them into the wrapper library.

4.3 Non-deterministic Event Capturer

To record the effects of non-deterministic events, a straightforward
approach is to configure ETM both for user space and kernel space.
However, this also introduces significant overhead (e.g., generating
several gigabytes of ETM trace in seconds). Therefore, we choose to
turn off the ETM for kernel space to reduce the performance over-
head and design a non-deterministic event capturer to handle these
effects with low overhead. We consider primary non-deterministic
events from syscalls.
Classification of Syscall. It is non-trivial to efficiently capture
syscalls as mentioned in C3. We classify syscalls into four types
shown in Table 1 according to their effect on memory and registers.
With classification, we record syscalls with different strategies to
significantly reduce capture overhead. In particular, we collect pa-
rameters (from the entrance) and impact (from the exit) according
to the semantics of each syscall by tracepoints [52].
Reading Status: The RS-Type syscalls read information related to
system status. The results of these syscalls may be transferred by
the return value (e.g., getpid), a pointer (e.g., getitimer), or shared
memory (e.g., getrandom). For syscalls in this category, we directly
record the memory or register they changed.
Writing Status: The WS-Type syscalls change the status of the sys-
tem. As the WS-Type syscalls do not directly change the memory
and registers of the program, we ignore them unless they fail and re-
turn an error code. For example, the syscall epoll_create in epoll

API is ignored, but the change introduced by syscall epoll_wait
is recorded since we classify it as an RS-Type syscall.
Reading Content: The RC-Type syscalls read content from an ex-
ternal input, and the handling of RC-Type syscalls is similar to that
of RS-Type syscalls. However, since the content is usually much
larger than the status read in the RS-Type syscalls, we choose to
truncate the content and record only the first 256 bytes due to
the performance requirement. Recording the entire content may
become impractical in extreme cases (e.g., data center with tremen-
dous uploads) as it results in a huge size of record file. We consider
a 256-byte input is already a considerable value. To the best of our
knowledge, existing Linux system tool sysdig [66] only keeps the
first 80 bytes of input, and there are few cases where the input
size exceeds 256 bytes [66]. Although the cases are rare, we still
evaluate the impact of the truncation in §6.5.
Writing Content: TheWC-Type syscalls write content to an external
source. We consider that they would not affect the execution status
of the target program. For example, the syscall write is ignored,
and the written content is recorded if the RC-Type syscall read is
used to read from the source again.

In general, Investigator provides a basic record of all syscalls by
default, including the syscall number, thread ID, and return result.
In addition, we manually categorize over 60 system calls covering
all cases that emerged from our experiment, and Investigator
provides additional records based on classification. For example,
for the syscall getrandom (void *buf, ...), Investigator ad-
ditionally records the data inside buf. Each classification is based
on the above consideration with the four types of syscall in Table 1,
so new syscalls also can be handled.

5 ANALYSIS STAGE

After receiving information from the recording stage, Investiga-
tor processes control and data flow reconstruction and root cause
analysis on another host server rather than the Arm platform.
Control Flow Builder. Control flow builder utilizes the ETM trace
result and the binary of the program to reconstruct control flow
(i.e., each instruction that the program executes). The ETM trace
contains addresses, timestamps, and context ID. Note that ETM
only records the addresses for branch and condition instructions.
Therefore, Investigator combines the ETM trace with the program
binary to recover the control flow. Specifically, Investigator builds
the entire control flow by combining the ATOM packet as described
in Figure 4 with the instructions between every two consecutive
addresses of the ETM trace from the program binary. Figure 4 (b)
shows the decoded ETM packet information, which records the
branch address (i.e., InsAddr) when the program is executed. There
is also an ATOM packet, which indicates that the program encounters
a branch instruction when it executes. The ATOM-N indicates that
the program did not jump to the branch, while the ATOM-E indicates
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…
400644:  str x0,  [x29, #16]
400648:  ldr x0,  [x29, #16]
40064c:  mov w1,   #0x1
400650:  strb w1,   [x0]
400654:  ldr w0,   [x29, #28]
400658:  cmp w0,   #0x0
40065c:  b.eq  400668
400660:  ldr x0,   [x29, #16]

400664:  bl  411ba0
…

(a) Program control flow

InsAddr: 0x400644
…

ATOM - N

ATOM - E
InsAddr: 0x411ba0
…

(b) ETM decoded packet

Figure 4: A simplified example of control flow construction
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Figure 5: Instruction blocks in a multithreading program.

that the program entered the branch. In this example, the program
encounters a conditional comparison at address 40065C as shown
in Figure 4 (a). With the ATOM-N, we learn that the program did
not enter the address 400668, which also hints that the content of
register w0 of the previous instruction 400658 is not 0x0. Similarly,
combining with the ATOM-E at instruction 400664, Investigator
understands that the program will go to branch address 411ba0 to
execute subsequent instructions. This subsequent address 411ba0
is also recorded by the ETM as the InsAddr packet.

For parallel programs, we utilize context ID to distinguish the
instructions of different threads, and employ timestamps to deter-
mine the order of instructions with different context IDs. For two
instruction blocks with the same context ID, the order of instruc-
tions is restored accurately in the constructed control flow. For two
instruction blocks with different context ID, we use timestamps
to determine the order of blocks. If one block ends before another
block starts, the order of instructions can be determined. If two
blocks have overlapped timestamps, the order of reconstructed
instructions may be inconsistent with actual execution. However,
according to the previous research [38] and our evaluation, in a
multithreading program, we find that the instructions related to
data race are not executed closely. Our precision of fine-grained
timestamp can determine the order in which these blocks are ac-
cessed (C2) and ensure these instructions related to data race are
located in a small number of blocks with no overlaps. For example,
as shown in Figure 5, the instructions leading to data race between
two threads are usually located at 1𝐵 and 2𝐶 , or 1𝐵 and 2𝐷 , thus
we determine the order of data race. Details about the accuracy of
timestamps are provided at §6.2 and the experiments in §6.3 show
that the accuracy of timestamps in Investigator is sufficient for
diagnosing failures.
Data Flow Builder. Data flow provides the states of memory and
registers after each instruction, which is essential for developers to
determine the root cause of failures. Previous works [18, 71] utilize
the control flow and coredump captured at crash to infer the data
flow with forward-and-backward analysis. However, the backward
analysis introduces uncertain factors to data flow because some
instructions are irreversible. For example, if the instruction eor

01 // checkpoint.   --->  x29 = 0x7fe3665450   [0x7fe3665488] = 1
[0x7fe3665490] = 2
02 ldr x0, [x29,#56] --->  x0 = 1
03 ldr x1, [x29,#64] --->  x1 = 2
04 add x0, x0, x1    --->  x0 = 3, x1 = 2
05 eor x1, x1, x1    --->  x1 = 0

01 // The wrapper for the non-deterministic function calloc
02 void* calloc_wrapper (size_t x0, size_t x1){
03 void* ret = calloc(x0, x1);
04 record(__func__, ret); // save the result
05 return ret;}

01 // Emitted each time an asset swap occurs via the swap function
02 event Swap (
03 address indexed sender,
04 uint amount0In,
05 uint amount1In,
06 uint amount0Out,
07 uint amount1Out,
08 address indexed to);

01 function swap(address recipient, bool zeroForOne, int256
amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata
data) {

02 ...
03 // do the transfers and collect payment
04 ...
05 emit Swap(msg.sender, recipient, amount0, amount1,

state.sqrtPriceX96, state.liquidity, state.tick);}

01
02
03 btnView.setOnClickListener(new OnClickListener() {
04 @Override
05 public void onClick(View v) {
06 post(“user click:” + btnView.getText());
07
08 post(“user click:” + ((Button) v).getText());
09 }
11 })

Figure 6: A simplified example of data flow construction

x1, x1, x1 clears register x1 (e.g., Line 5 of Figure 6), we cannot
infer the original value stored in x1 with the backward analysis.
Thus, the necessary data flow for debugging the failure is possibly
missing. For example, as aforementioned in Figure 1, it is impossible
to recover the data affected by the first invocation of syscall read
based on the coredump, since it is already overwritten by that of
the second invocation.

To accurately recover data flow (C3), Investigator reconstructs
the data flow by the forward analysis simulating the execution of
each instruction in the restored control flow based on an initial pro-
gram state (i.e., checkpoint containing the register values and the
in-memory data of the target program). For a simplified example
shown in Figure 6, it is a restored control flow and data flow. To re-
cover data, Investigator first retrieves the register values and the
memory data from the checkpoint for the first two initial instruc-
tions. Then Investigator infers the state of memory and register
after the execution of each instruction via semantic information
(e.g., the common instruction add, eor, etc.). In this example, the
eor instruction erases the data of register x1, but it does not affect
what x1 was before. Moreover, for non-deterministic functions and
events that cannot be inferred, Investigator recovers the state of
memory and registers by parsing recorded information (e.g., library
hook and syscalls).
Root Cause Detector. We define the root cause of a failure as a
group of instructions and input that satisfy the following require-
ments: i) They are involved in the failed execution and correlated
with the occurrence of the failure; ii) they contain the necessary
instructions where changing these instructions results in a correct
execution. We argue that identifying such a small set of instructions
and input related to failure produces reasonable efforts for facilitat-
ing failure diagnosis procedure. Therefore, Investigator uses Root
Cause Detector to narrows down the cause of a failure from the re-
constructed control-data flow. Note that, we implement the detector
by adapting the existing work [38]. The detector first performs an
inclusion-based points-to analysis [2] for the reconstructed control
flow to obtain points-to sets, which builds a transitive relationship
between memory addresses.

Investigator identifies the memory address and variables in-
volved in crashing or hanging instructions as target nodes. A se-
quential failure is considered if the failing address are only in the
same thread. For sequential failure, Investigator filters out a small
set of instructions related to the target nodes and their data from the
reconstructed execution flow via points-to sets. Subsequently, In-
vestigator identifies the corrupted data values and corresponding
control flow (e.g., input source, instruction block causing the data
to be corrupted, crashed position) from the small set of instructions
as the result.

If Investigator finds that the write and read of the failing ad-
dress have arisen in different threads, this failure is considered a
concurrency failure. For concurrency failure, Investigator first
uses the same method to filter out a small set of instructions from
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execution flow across different threads. Since these instructions
have recorded the actual memory access order of data race when a
bug occurs, Investigator follows the approach [38] that generates
patterns as concurrency failure prediction. Specifically, Investiga-
tor looks for the common atomicity violation patterns (e.g., RWR
(Read, Write, Read), WWR, RWW, WRW) and order violation pat-
terns (e.g., WW, WR, RW) in these instructions. Once concurrency
failure patterns are gathered, Investigator verifies the effects of
each pattern following the statistical approach [36, 38, 42, 43]. In
particular, Investigator identifies the presence of a pattern in
the control flow of normal execution without failure, and elimi-
nates these patterns. It is reasonable since Investigator gathers
more traces from successful or failure executions in large-scale
deployment scenario (§3.1), which is similar to existing production
failure-diagnosis systems [28, 38, 39]. For the rest patterns that may
successfully cause concurrency bug, Investigator retains them as
the alternative statement orders of root cause. Then Investigator
identifies the pattern that appears in the failure execution with
fewer instructions as the result.

6 EVALUATION

We implement the prototype of Investigator with C and Python
based on: ETM driver on Linux, that provides interfaces for ac-
cessing the functionalities of ETM; ptm2human [33], a tool for
decode ETM trace; Investigator is deployed on an Armv8 Juno r2
board [6] equipped with 6 cores (2 Cortex-A72 cores and 4 Cortex-
A53 cores) and 8GB RAM, and a 256GB SSD is attached to the board.
The firmware and OS running on the board is Linaro deliverables
Linux 5.3 [44], and we allocate 256 MB ETR circular buffer for ETM
tracing. This is the default settings for our experiments, and the
ETR buffer size can be adjusted as required.

In this section, we first use a case study (§6.1) given in Figure 1 to
show the complete workflow of Investigator. Next, we focus on
evaluating Investigator with the practical requirements discussed
in §1 (Non-invasive, Low overhead, and Complete). Moreover, the
impact of truncation discussed in §4.3 is also evaluated. Specifically,
we aim to answer the following research questions:
RQ 1: Can Investigator accurately recover control and data flow?
(§6.2)
RQ 2: Is the root cause diagnosing in Investigator effective? (§6.3)
RQ 3: How efficient is Investigator for production environment?
(§6.4)
RQ 4: What is the impact of truncation? (§6.5)

6.1 Case Study

We use the program shown in Figure 1 to illustrate how Investi-
gator diagnoses its bug. When the program failure occurs, Inves-
tigator recovers the complete control and data flow according to
the collected information from the recording stage. Then, Investi-
gator performs root cause analysis based on reconstructed control
and data flow.

By identifying crashed memory, Investigator first determines
that the memory associated with failure is related to variable len,
and the source of len is related to the shared variable big_buf.
Next, Investigator performs alias analysis to obtain instructions
related to big_buf from the reconstructed control and data flow.

Time Thread1 Thread2 Data values

1.

2.

3.

if (len = strlen(big_buf))<15 {

read(fd, big_buf, 64);

strcpy(buf, big_buf);

4.

5.

6.

7.

read(fd, big_buf, 64);

strcpy(buf, big_buf);

__assert_fail

Total=0, len=0,buf=?

read, fd=3, size=64, res=25,  
data="123456789012345...45"
total=0, len=875770417,  
buf=“123456789012345"
read, fd=4, size=64, res=6,  
data="123456"

read, fd=4, size=64, res=6,  
data="123456"

1.

2.

3.

4.

6.

   Root cause from Investigator for case study in Figure 1

if (len = strlen(big_buf))<15 {

8.

...

5.

7.

8.

Figure 7: The root cause from Investigator for Figure 1.

With the identified instructions containing big_buf, Investigator
suspects that the potential access patterns of this failure are RWR
(Read, Write, Read) and WRR. Finally, Investigator verifies whether
the patterns appear in the reoccurring failure, and the pattern RWR
is chosen as output.

The root cause identified by Investigator for this failure is
illustrated in Figure 7. The arrows between the two threads in
dotted rectangles indicate the pattern of data race that causes this
failure (RWR). We can see that Thread 2 checks the length of big_buf
(Line 1) before the first read (Line 2) in Thread 1. Since the data
of read is captured, developers can identify that big_buf contains
a string with length 25. Therefore, the following strcpy (Line 3)
introduces a buffer overflow, and len is unexpectedly changed to
875770417, which finally leads to the failure of assert (Line 8).

Note that the program does not crash immediately after the buffer
overflow. In contrast, it executes normally for the second iteration
(Line 4 to 6). The second iteration overwrites the values (buf and
len) involved in the buffer overflow. At this point, developers may
be confused without the help of Investigator, for these values
should not cause the failure.

6.2 Accuracy

To evaluate the accuracy of Investigator, we employ 8 buggy
programs widely used to failure diagnosis systems [18, 39, 73, 74]
and measure the accuracy from three aspects: The accuracy of ETM
timestamps, the accuracy of control flow recovery, and the accuracy
of data flow recovery.

Recall that the generation rate of ETM timestamps might affect
the accuracy of control flow recovery (§5). To evaluate whether
the ETM timestamps generated by Investigator are sufficient
for control flow recovery, we test it with a case with extremely
heavy data race. Specifically, we make two threads write to a shared
variable concurrently for 10, 000 times without any other operations.
The result shows that Investigator is able to identify the order of
99.34% instruction blocks, and the blocks without timestamp only
take a percentage of 0.66%. Thus, we believe that timestamps in
Investigator are sufficient for most programs in practice.

To further evaluate the accuracy of control flow recovery, we
compare the reconstructed control flow with the original binaries
and their source code. Note that Investigator focuses on binary
programs, the source code is used as the ground truth. The result
shows that executed instructions from the reconstructed control
flow in all tested programs are consistent with the logic of the
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Table 2: The data recovery rate of Investigator. We obtain

the data recovery rate under the configuration of 256 bytes

truncation. #Insts= #instructions; #GT=the number of instru-

mented coredumps; Data Rec=data recovery rate.

Program-BugID # Insts # GT Data Rec.

shared_counter-NA 172 3 100%
log_proc_sweep-NA 264 9 100%
bank_account-NA 387 10 100%
circular_list-NA 2,108 28 100%
mysql-169 3,867 4 100%
pbzip2-N/A 8,053 11 100%
curl-2017-1000101 9,161 7 97.65%
curl-965 14,412 7 99.30%

source code, and match the original assembly code in the binary.
Therefore, we consider the reconstructed control flow is accurate.

For the evaluation of data flow recovery, we need to obtain the
ground truth. We derive the ground truth sampling by manually
instrumenting a large number of coredumps in the source code.
Note that the instrumentation is only used to obtain the ground
truth, and Investigator does not require the instrumentation at all.
Next, the instrumented program is executed with Investigator,
and all the records except for the instrumented coredumps are fed
to the Control flow Builder and Data Flow Builder to reconstruct the
control flow and data flow. Finally, we compare the reconstructed
data flow with the captured coredumps.

As shown in Table 2, Investigator fully recovers the data flow of
6 tested programs, and the data recovery rate of the rest 2 programs
is more than 97%. The incomplete data recovery is mainly caused by
truncation of non-deterministic event capturer (§4.3). The detailed
evaluation of the impact of the truncation is presented in §6.5.

We also compare the accuracy of data flow recoverywith REPT [18],
a state-of-the-art system targeted at x86. Since the source code of
REPT is not public, and we can not reimplement REPT due to differ-
ent CPU architecture. We did an alternative best-effort qualitative
comparison focused on one representative program pbzip2 with
an average data recovery rate in REPT. Compared with the 95.33%
recovery rate in REPT, Investigator completely restores the data
flow of pbzip2. We consider the reason is that REPT does not handle
syscall and marks all volatile registers as unknown upon a system
call.

6.3 Effectiveness

We collect tested cases from bugbases [11, 34, 35], which were
used in previous works [18, 38, 39, 73, 74]. However, due to the
Investigator being based on the Arm 64-bit architecture, not
all test cases can be compiled and reproduce failures successfully.
Therefore, we use 17 representative C/C++ buggy cases to evaluate
the effectiveness of Investigator in diagnosing the root cause of
failures.

We believe that these evaluated programs have covered wide
bug types, which are divided into two groups, i.e., Group E and
Group R. As listed in Table 3, Group E contains 7 bugs reconstructed
from homebrewed applications, and Group R includes 10 bugs in
real-world applications. There are 13 concurrency bugs, of which 7
are single-variable atomicity violation (SAV), 3 are multi-variables
atomicity violation (MAV), 2 are deadlock (DL), and 1 is order
violation (OV). There are also 4 non-concurrency bugs. These bugs
are collected from a diverse set of popular real-world systems (e.g.,

Mysql, Apache, Curl, Pbzip, and Aget) and wide symptoms (e.g.,
NULL pointer dereference, use-after-free, and race).

We execute these programs using PoCs separately in our system
until the failure occurs and use Investigator to analyze the failure.
With the identified root cause and reconstructed control and data
flow, we perform extensive experiments in terms of facilitation, di-
agnosis accuracy, and order accuracy to evaluate how the generated
output helps failure diagnosis.
Facilitation. First, wemeasure the quantity of generated root cause
(e.g., #instructions and #variables) to show how Investigator can
facilitate developer understand failure. As shown in Table 3, the out-
puts of Investigator contain only a small number of instructions
and variables from a large-scale control and data flow. With Inves-
tigator, the number of instructions and variables that need to be
understand is significantly reduced. For example, the reconstructed
control and data flow on the execution of bug in pbzip2 include
8,053 instructions and 89 variables, and Investigator reduces the
quantity to 6 instructions and 1 variable for developer to learn the
failure.
Diagnosis Accuracy. Next, we evaluate the diagnosis accuracy of
Investigator via analyzing the related bug-fixing patches and our
diagnosis results, similar to previous failure-diagnosis works [38,
39]. By manually analyzing the patches indicating the location
that the developers fix the bug and our diagnosis results, we can
see whether Investigator can accurately diagnose the root cause.
Specifically, we check whether the modified instructions and related
variables in the patches are included in the output of Investiga-
tor. The result indicates that the output of Investigator contains
the fixed instructions and variables for all 17 bugs. For example,
the issues with data races identified by developers have the same
patterns as what Investigator diagnoses as the root causes of con-
currency bugs. We also find that the developer fixes the sequential
bugs by limiting illegal input parameters. The illegal input data,
variable corrupted position, and crashed position are provided in
the Investigator diagnosis results.
Order Accuracy.Moreover, we use a measurement (normalized
Kendall tau distance [39] 𝜏) from previous works [38, 39] to eval-
uate order accuracy. The measurement can analyze the similarity
between the ordered instruction list of diagnosis results provided
by Investigator and the ordered ground truth list. Specifically,
we use the normalized Kendall tau distance to count the order of
pairwise disagreements between two instruction lists. The larger
distance means the order between the two instruction lists is less
similar. Therefore, we define the ordered instruction list in the root
cause generated by Investigator as Δ𝐼 and that in the ground
truth as Δ𝐺 , then the order accuracy is defined as a percentage
𝑂𝐴 = 100× (1− 𝜏 (Δ𝐺 ,Δ𝐼 )

# of pairs in Δ𝐺∩Δ𝐼
). We measure the order accuracy

for all the 17 bugs diagnosed in our evaluation. The OA is 100%
for each one, which allows us to conclude that Investigator can
diagnose the failures with high accuracy. It also confirms that the
timestamps generated by ETM are precise enough to determine the
accurate control flow that causes the failures.
Comparison of effectiveness. We further compare Investiga-
tor with REPT [18] in the types of bugs supported for diagno-
sis. Investigator recovers the data pertaining to failures caused
by non-deterministic input (i.e., curl-965, curl-2017-1000101,
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Table 3: Bugs diagnosed by Investigator.

Program-BugID Bug type Symptom

CDF

Match

Root Cause

# I # V # I # V

E

1 shared_counter-N/A SAV assertion failure 225 8 Yes 4 1
2 log_proc_sweep-N/A SAV segmentation fault 234 19 Yes 6 1
3 bank_account-N/A SAV race condition fault 366 14 Yes 5 1
4 string_buffer-N/A SAV assertion failure 328 39 Yes 6 1
5 circular_list-N/A MAV race condition fault 2,108 117 Yes 10 2
6 mysql-169 MAV assertion failure 3,867 9 Yes 12 2
7 mutex_lock-N/A DL deadlock 64 8 Yes 4 2

R

8 SQLite-1672 DL deadlock 7,139 84 Yes 12 2
9 pbzip2-N/A OV use-after-free 8,032 89 Yes 4 1
10 aget-N/A MAV assertion failure 7,350 76 Yes 18 2
11 memcached-127 SAV race condition fault 10,171 69 Yes 21 1
12 mysql-3596 SAV segmentation fault 32,839 97 Yes 10 1
13 apache-21287 SAV double free 331,639 268 Yes 22 1
14 curl-965 SEQ unhandled input pattern 11,412 74 Yes 20 1
15 curl-2017-1000101 SEQ out of bounds read 9,161 57 Yes 18 1
16 cppcheck-2782 SEQ unhandled input pattern 232,489 83 Yes 24 1
17 cppcheck-3238 SEQ null pointer dereference 280,113 94 Yes 27 1

N/A=bugid is not available; CDF=reconstructed control and data flow; #I=#instructons; #V=#variables; Match=the root cause from Investigator correlated to the bug patches (ground truth).
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Figure 8: Performance Evaluation with UnixBench.
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Figure 9: Performance Evaluationwith Real-world Programs.

cppcheck-148, and cppcheck-3238) and successfully locates these
bugs. In contrast, without handling syscalls for the buggy programs,
REPT is hard to recover corresponding data flow affected by the
input, as it does not handle and mark the data as unknown. For ex-
ample, the program curl-2017-1000101 crashes when the system
call overwrites the memory buffer. It is critical to find the input
to understand the root cause, but it is impossible to know using a
crashed coredumpwithout providing system call data flow since the
heap (including the value of input) was corrupted by the overflow.
As such, REPT would fail to find the root cause from this input data.
Therefore, we believe that Investigator provides better accuracy
than REPT to the above types of bugs.

6.4 Efficiency

To evaluate the efficiency of Investigator, we run UnixBench
5.1.2 [40] to measure the performance impact. Moreover, to evaluate
the overhead of Investigator in practice, we use four real-world
programs with various sizes of payloads as benchmarks to measure
the performance overhead of normal executions when the programs
do not encounter failures. Note that all tests are evaluated when
Investigator’s entire record modules are enabled, including ETM
Manager and non-deterministic event capturer with library hooks.

UnixBench. We run UnixBench on Linux and show the perfor-
mance results in Figure 8. The performance overhead is 3.88% on
average when Investigator is enabled, and the highest perfor-
mance overhead is 9.3% in System Call. Specifically, File Copy,
Pipe Throughput, and System Call introduce a related high over-
head. We consider the reason is that these benchmarks involve
intensive syscall and I/O operations, which incur larger overhead
than others.
Real-world Programs. To measure the performance overhead
in practice, we use four real-world programs including Pbzip2,
Aget, SQLite, and Memcached. Each program is configured to be
executed in three different sizes of input. Specifically, Pbzip2 is
used to compress files of 10 MB, 500 MB, and 2 GB size. Aget
is tested to download files of 50 MB, 500 MB, and 2 GB size in
the same network. SQLite is evaluated by sqlite-bench [61] to
write 100, 000, 500, 000, and 2, 000, 000 values in sequential key
order in sync mode. A benchmark tool Twemperf [68] was used
to test Memcached, which creates 20, 000, 300, 000, and 1, 000, 000
connections to a Memcached server running on localhost.

The result of the experiment is shown in Figure 9. Overall, the
average performance overhead of all tests is 2.3%. The highest
overhead is 5.3% for SQLite. The performance overhead has an
improvement when test stress increases in all four programs. We
believe it is caused by non-deterministic event capturer due to I/O
operations and syscalls.
Comparison of efficiency. We compare the performance with
REPT, the state-of-the-art diagnosis tool that utilizes Intel PT and
runs continuously in production environments on x86 architecture.
The performance overhead of Unixbench programs from previous
REPT public paper [26]. For Intel PT tracing only, REPT’s average
performance overhead is 3.06%, and its highest performance over-
head is 9.68% with a context switch logging enabled. In comparison,
Investigator’s average performance overhead is 3.88%, with the
highest overhead being 9.3%. Based on these results, we believe
that Investigator’s performance overhead is comparable to the
diagnosis system designed for production environments.

6.5 Impact of the Truncation

As discussed in §4.3, non-deterministic event capturer in Investiga-
tor truncates the content when recording RC-Type syscalls. To learn
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Table 4: Impact of the Truncation

Program-BugID

Non-Trun 32 bytes 64 bytes 128 bytes 256 bytes

File (KB). Root. Over. File (KB). Root. Over. File (KB). Root. Over. File (KB). Root. Over. File (KB). Root. Over.

cppcheck-2782 12.57 Y 3.05% 12.39 N 1.72% 12.41 Y 1.84% 12.47 Y 2.14% 12.56 Y 2.92%cppcheck-3238 15.93 Y 15.7 N 15.73 Y 15.79 Y 15.92 Y

curl-965 50.025 Y 2.29% 49.797 N 0.72% 49.831 Y 0.96% 49.903 Y 1.36% 50.023 Y 2.24%curl-2017-1000101 42.799 Y 42.576 N 42.604 Y 42.661 Y 42.795 Y

File=The file size of non-deterministic event capturer; Root.=Root cause is identified or not; Over.=Performance overhead.

the impact of the truncation, we perform an extended experiment
with the real-world programs curl and cppcheck. We choose these
two programs since the truncation of other programs in Table 3
does not generate perceivable impacts (their causes of the failures
are not related to the content of syscalls). In the experiment, we
configure Investigator to truncate the content of syscalls (larger
than 256 bytes) to different sizes including 32 bytes, 64 bytes, 128
bytes, and 256 bytes. Moreover, the case without any truncation
is used as the baseline. For each truncation size, we measure the
performance overhead and the record size of non-deterministic
event capturer. The impact on the root cause analysis is presented
in Table 4.
Impact on Storage. As shown in the File column of Table 4, the
size of truncation does not affect the size of record files significantly.
The reason is that the content of syscall is relatively small. How-
ever, the content would be large in specific scenarios (e.g., reading
large files), and the solution without truncation would introduce
significantly larger record files.
Impact on Efficiency. The Over column in Table 4 illustrates the
performance of Investigatorwith various truncation sizes. Similar
as the impact to the storage, the larger truncation size introduces a
higher performance overhead. Note that the overheads of Non-Trun
and 256 bytes are similar since the length of the content is slightly
larger than 256 bytes.
Impact on Effectiveness. The Root column indicates whether
the root cause is successfully identified. Note that the truncation
does not affect the accuracy of alias analysis for the control flow
used in the root cause detector. Therefore, Investigator can still
identify a small number of instructions related to a failure whenever
truncation happened. However, Investigator might fail for bugs
related to the content of RC-Type syscalls if the truncated data
cannot provide sufficient information (e.g., truncate 32 bytes). In
conclusion, we consider suitable truncation settings (e.g., 256 bytes)
can both preserve sufficient information and avoid unaffordable
storage or unacceptable performance slowdown.

7 DISCUSSION

Investigator uses non-deterministic event capturer to record the
non-deterministic factors. The truncation of our capture may lead
to reproduce the actual bug to fail. We can adjust the truncation
but also incur more overhead, i.e., trade-off between truncation size
and performance overhead (§6.5).

Investigator’s deployment assumption is an Arm server. Nev-
ertheless, Investigator is compatible with both the Cortex-A or
Cortex-M architecture since ETM is available on almost all proces-
sors in both architectures. Therefore, to extend Investigator to
other different OSes or bare-metal applications, we need to mod-
ify the non-deterministic event capturer to support other systems.

However, adapting to mobile devices requires more effort, for ex-
ample, only logging recent executions. This may weaken Investi-
gator and is part of our future work.

Although Intel PT support data trace, users may instrument
programs with the ptwrite instructions, which records data val-
ues into the Intel PT trace. The instrument causes a violation of
non-invasive. In contrast, Investigator is non-invasive for data
recovery. Investigator’s software components can be comple-
mented for the Intel processor, combining PT’s instruction trace to
help control-data flow construction and diagnosis.

8 RELATEDWORK

Fault Localization Techniques. For closely-related fault localiza-
tion techniques, Gist [39] and Snorlax [38] use hardware tracing on
x86 architecture to statistically infer the root causes of concurrency
failures with multiple successful and failing traces. However, our
approach differs from the techniques in several ways. First, our
approach is able to handle complex and non-deterministic failures,
such as concurrency bugs and those caused by non-deterministic
input like system calls. As self-acknowledged [38], Snorlax strug-
gles with these types of failures, as it only provides detection of
atomicity violation. In contrast, Investigator narrows down the
cause of a failure from the reconstructed control and data flow, and
is able to perform diagnosis to a failure caused by input. Second, our
approach is designed to be efficient, using a combination of hard-
ware and software tracing to minimize overhead. In contrast, Gist
requires gathering data flow with instrumentation from multiple
runs to find a failure sketch. Finally, our approach does not require
access to source code since it solely works on the binary level. In
contrast, Gist repeatedly modifies the source code to instrument
programs in production to gather information for root cause diag-
nosis, which may not be possible or desirable in practice. However,
while there are many fault localization techniques [15, 77] based
on trace analysis, we perceive these techniques as complementary
to Investigator’s root cause detector.
Hardware-assisted Analysis Techniques. There has been an
increasing number of approaches [18, 23, 26, 38, 39, 71, 76] exploit-
ing hardware-assisted features on x86 or Arm. POMP [71] and
REPT [18] can reconstruct data flow from a PT trace and a crashed
coredump, but has no semantic-aware handling of syscalls, suc-
cumbing to recover a limited data. HART [23] focuses on trace for
kernel module, but it weakens the multi-core support due to hard-
ware limitations and incurs heavy runtime overhead during tracing.
NCScope [78] leverages debug tool DSTEAM[4] with ETM and
eBPF to collect data to identify behaviors of Android apps. In com-
parison, Investigator aims at failure diagnosis in the production
environment without extra debug tool requirement.
Record and Replay. There is already a number of studies focusing
on record and replay to help failure diagnosis [1, 13, 14, 22, 48, 56–
59, 69]. Although useful during development, existing systems are
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not commonly used in production because the systems usually incur
much overhead since they need to perform full record, or require
significant number of failure running logs to replay concurrency
bugs [1, 50, 57, 69].
Symbolic Execution. To reproduce a particular failure, existing
approaches [16, 37, 75] relies on symbolic execution with crashed
coredump to reproduce bugs by determining program input states
that lead to failures. ARCUS [72] leverages PT to help construct
symbolic program states with low overhead, and pinpoint a concise
root cause. These approaches are orthogonal to ours. Different from
these systems, Investigator focuses on reconstructing the actual
control and data flow without modifying or instrumenting to the
target programs.

9 CONCLUSION

We propose a failure diagnosis framework Investigator on Arm to
satisfy practical requirements. It leverages hardware features and
software-based mechanisms to record program execution and then
build control and data flow for failure diagnosis. The comprehensive
evaluation shows that Investigator accurately recovers control
and data flow, and effectively identifies the root cause for various
types of bugs with a low runtime overhead.
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