
FlushTime: Towards Mitigating Flush-based Cache Attacks via
Collaborating Flush Instructions and Timers on ARMv8-A

Jingquan Ge
Research Institute of Trustworthy Autonomous Systems, Southern

University of Science and Technology, China
Department of Computer Science and Engineering, Southern University of

Science and Technology, China

Fengwei Zhang∗
Department of Computer Science and Engineering, Southern University of

Science and Technology, China
Research Institute of Trustworthy Autonomous Systems, Southern

University of Science and Technology, China

ABSTRACT
ARMv8-A processors generally utilize optimization techniques such
as multi-layer cache, out-of-order execution and branch predic-
tion to improve performance. These optimization techniques are in-
evitably threatened by cache-related attacks including Flush+Reload,
Flush+Flush, Meltdown, Spectre, and their variants. These attacks
can break the isolation boundaries between different processes or
even between user and kernel spaces. Researchers proposed many
defense schemes to resist these cache-related attacks. However, they
either need to modify the hardware architecture, have incomplete
coverage, or introduce significant performance overhead.

In this paper, we propose FlushTime, a more secure collaborative
framework of cache flush instructions and generic timer on ARMv8-
A. Based on the instruction/register trap mechanism of ARMv8-A,
FlushTime traps cache flush instructions and generic timer from user
space into kernel space, and makes them cooperate with each other
in kernel space. When a flush instruction is called, the generic timer
resolution will be reduced for several time slices. This collaborative
mechanism can greatly mitigate the threat of all flush-based cache-
related attacks. Since normal applications rarely need to obtain high
resolution timestamps immediately after calling a flush instruction,
FlushTime does not affect the normal operation of the system. Se-
curity and performance evaluations show that FlushTime can resist
all flush-based cache-related attacks while introducing an extremely
low performance overhead.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and countermea-
sures;

KEYWORDS
ARMv8-A; Cache attack; Defense; Flush instruction; Generic timer

1 INTRODUCTION
Nowadays, ARMv8-A devices such as smart phones, tablet, in-
vehicle electronic systems and the IoT devices have flooded the
market. Moreover, due to higher performance and lower power con-
sumption, many cloud servers [32, 65, 78] based on ARMv8-A have
begun to disrupt the data center market. However, like Intel and
AMD’s x86 processors, ARMv8-A processors are also suffering a
variety of security threats. Among them, cache-related attack is one
of the most attractive threats.

∗ Fengwei Zhang is the corresponding author.

Since the concept of cache-related attack [36, 41] was proposed
in late 1990s, increasing types of cache-related attacks [7, 8, 25–
27, 45, 53, 54, 63, 75, 81] have been presented by researchers. With
the continuous emergence of Meltdown [46], Spectre [40], and their
variants [6, 9, 30, 39, 42, 49, 64, 67, 76], cache-related attacks
have become one of the biggest threats to modern processors and
operating systems. In these cache-related attacks, researchers often
utilize cache flush instructions to reduce the noise and improve
the resolution of cache-related attacks, such as Flush+Reload [81],
Flush+Flush [25]. More importantly, Meltdown [46], Spectre [40],
and most of the discovered variants (based on Flush+Reload) [6, 9,
30, 39, 42, 49, 64, 76] also utilize the cache flush instructions as an
attack step. We give this type of cache-related attack a name called
“flush-based cache-related attack”.

Flush-based cache-related attack can be implemented only if the
attacker knows the flush instructions and target virtual addresses, so
a physical address mapping is not required. They are currently the
most popular, least noisy, and easiest forms of cache-related attacks.
Although the flush instructions greatly reduce the threshold of cache
attacks, it is not feasible to prohibit the flush instructions in user
space. This is mainly because the flush instructions in user space is
useful and necessary in some specific applications. For example, in
some software-hardware co-designs, it is often necessary to transmit
small batches of discontinuous data between software and hardware
[21]. In this application scenario, calling the DMA transfer module
in the kernel space will be very time-consuming and complicated to
operate, while the flush instruction available in user space is very
efficient. In the case that the hardware memory has virtual address
mapping, data can be directly written from CPU memory virtual
address to the hardware memory virtual address. Then, the CPU can
call the flush instruction very efficiently to ensure the data consis-
tency between the CPU cache and the hardware memory. Therefore,
it is an attractive topic to ensure the availability of cache flush in-
structions in user space while avoiding the security vulnerabilities
posed by them.

To detect and defend against flush-based cache-related attacks,
researchers have proposed many defense schemes. However, these
schemes have various shortcomings. First, Modifications to the hard-
ware architecture [3, 4, 16, 19, 37, 43, 44, 60] cannot be deployed on
existing devices. Second, software runtime defenses [10, 14, 23, 70,
83, 84, 87] cannot cover all flush-based cache-related attacks. Third,
some solutions [14, 23, 73, 83, 87] may bring significant perfor-
mance loss. Fourth, browser defense countermeasures [11, 72, 82]
disable the high resolution time API, which is not feasible in the
operating system.

In this paper, we present FlushTime, a framework that can resist
all flush-based cache-related attacks while ensuring the availability

1

of flush instructions and generic timers on ARMv8-A. FlushTime
utilizes the instruction/register trap mechanism of ARMv8-A to trap
cache flush instructions and generic timer access into the kernel
interrupt handlers. In the kernel space, these two handlers cooperate
with each other to handle the interrupts. When a process calls a
cache flush instruction, the time resolution obtained from the generic
timer will be temporarily reduced. Based on this cooperative mech-
anism, FlushTime effectively mitigates the threat of flush-based
cache-related attacks without affecting the normal use of flush in-
structions and generic timers.

We implement FlushTime by modifying the Linux kernel, and
perform security and performance evaluations on a Ubuntu system.
We conduct process-to-process Flush+Reload, Flush+Flush, Spectre
attacks, and process-to-kernel Meltdown attacks to evaluate the se-
curity of FlushTime. It shows that FlushTime has a larger defense
range than other software defense solutions. In addition, we conduct
performance evaluations on instruction calls and APIs respectively.
Moreover, we utilize UnixBench [48] and SPECrate2017 [62] to
evaluate the system performance of FlushTime. Overheads of Flush-
Time are only 1.2% on Unixbench and 0.17% on SPECrate2017,
which is better than all other software defense solutions.

Our main contributions are summarized as follows:

• We propose a scheme to mitigate all flush-based cache-
related attacks by slightly modifying the system kernel.
This scheme does not need to modify the hardware, which
is easy to deploy on existing devices.

• We design a cooperative mechanism between flush instruc-
tions and generic timer. This mechanism not only partially
prevents them from being maliciously exploited by flush-
based cache-related attacks, but also ensures their availabil-
ity in a normal system.

• We conduct security and performance evaluation on the real
hardware platform. The results show that our scheme is not
only more secure than other software solutions, but also
has the lowest performance overhead.

2 BACKGROUND AND MOTIVATION
In this section, we give the detailed descriptions of the cache flush
instructions, high resolution timer/API, and the flush-based cache-
related attacks. Finally, we introduce the existing defense solutions
and their shortcomings in depth.

2.1 Cache Flush Instructions
Most modern processors have cache flush instructions which can
immediately clean a cache line corresponding to a virtual address
of user space. On x86 processors, the instruction clflush [34] can
be utilized to clean up a cache line with a virtual address from user
space. ARMv8-A also has instructions similar to x86 processors.
They are usually called data cache maintenance instructions, such
as DC CIVAC, DC CVAU, and DC CVAC. These flush instructions
can be used in user space (EL0 level), which is the fastest and
easiest way for processors to clean a cache line with a virtual address.
Therefore, these instructions are very useful for the local applications
to guarantee cache coherency. For example, flush instructions are
usually utilized in DMA transfers of local application to ensure
that the data in the cache is consistent with the data in the main

memory. Although the flush instructions provide a fast cache data
cleanup interface, they also bring security threats like flush-based
cache-related attacks.

Fortunately, on ARMv8-A, there is a register SCTLR_EL1 (EL1
System Control Register) [5], which can control the execution priv-
ilege level of the cache flush instructions. By default, the bit of
SCTLR_EL1.UCI is set to 1. Under this setting, the cache flush in-
structions can be called at the EL0 level, which are executed in the
user space. In contrast, if the bit SCTLR_EL1.UCI is set to 0, the
cache flush instructions are trapped into EL1 level (kernel space).
Under this setting, when the cache flush instructions are called at the
EL0 level (user space), an interrupt will be generated and the system
will enter the EL1 level (kernel space) to handle this interrupt.

In the Linux kernel, user_cache_maint_handler() [57] is a ready-
made interrupt handler for the cache flush instructions. In our de-
sign of FlushTime, the bit SCTLR_EL1.UCI is set to 0, so all flush
instruction executions at EL0 level (user space) are trapped into
user_cache_maint_handler(). We made a small modification to
user_cache_maint_handler() so that the kernel can obtain the re-
duced resolution trigger of current process.

2.2 High Resolution Timers and API
High resolution timer or API is another useful but dangerous sys-
tem resource. On x86 processors, the high resolution timestamp
can be obtained by calling the rdtsc [34] instruction. Correspond-
ingly, ARMv8-A also has several types of high resolution timers,
such as PMCCNTR_EL0 (Performance Monitors Cycle Count Reg-
ister), CNTVCT_EL0 (Counter-Timer Virtual Count Register), and
CNTPCT_EL0 (Counter-Timer Physical Count Register) [5]. Each
ARMv8-A core has its own PMCCNTR_EL0, CNTVCT_EL0 and
CNTPCT_EL0. These three timers can be configured as EL0 (user
space) accessible or EL1 (kernel space) accessible. If all the timers
are configured to be accessible at EL0 level, it would bring serious
security threats to the system.

Fortunately, under the default settings of Linux, PMCCNTR_EL0
and CNTPCT_EL0 can only be accessed at the EL1 level (kernel
space). The CNTVCT_EL0 timer is the only one that is configured
as EL0 accessible by default. Since CNTVCT_EL0 is the only timer
that can be accessed in user space, the clock_gettime() API is also
implemented based on CNTVCT_EL0. The CNTVCT_EL0 timer and
the clock_gettime() API are so easy to use that they are often utilized
by attackers to carry out cache-related attacks.

ARMv8-A has a register CNTKCTL_EL1 (Counter-timer Ker-
nel Control register) [5], which can control the privilege level that
CNTVCT_EL0 can be accessed. If the bit CNTKCTL_EL1.EL0VCTEN
is set to 0, EL0 level (user space) access to CNTVCT_EL0 will
be trapped to EL1 level (kernel space). Linux kernel has a ready-
made interrupt handler cntvct_read_handler() [86] that handles
CNTVCT_EL0 access. In our design of FlushTime, we set the bit
CNTKCTL_EL1.EL0VCTEN to 0, so reading of CNTVCT_EL0 is
trapped into cntvct_read_handler(). We slightly modified the func-
tion cntvct_read_handler(), which can reduce or restore its own
resolution according to the resolution controller provided by the
kernel.

The function clock_gettime() is a high resolution time API pro-
vided by Linux system by default. The resolution of clock_gettime()

2

can reach the nanosecond level. This resolution is completely suffi-
cient to launch a successful cache-related attack. On the ARMv8-A
platform, clock_gettime() is implemented based on CNTVCT_EL0.
Its resolution is consistent with CNTVCT_EL0. Therefore, in the
design of FlushTime, we do not need to modify the implementation
of clock_gettime().

2.3 Cache-Related Attacks
At the end of the 20th century, Kocher [41] and Kelsey et al. [36]
proposed that cache behavior may pose a security threat. Since then,
research on cache-related attacks has developed rapidly. In the first
15 years of cache-related attack development, statistical methods
[2, 7, 51, 54, 55, 63, 68, 69, 75] were the most frequently utilized
method of cache-related attacks, which are very inefficient because
of too much noise. In recent years, to reduce the noise of attacks,
the flush instructions are frequently utilized in cache-related attacks
[6, 9, 25, 30, 39, 40, 42, 46, 49, 64, 76, 81]. Of course, on some
processors, the flush instructions are not available. Researchers have
also proposed several types of cache-related attacks [26, 54, 67] that
do not require flush instructions.

Below we will introduce cache-related attacks in two categories,
namely flush-based cache-related attacks and cache-related attacks
without flush. Since FlushTime is a defense scheme based on ARMv8-
A, the following description will focus on cache-related attacks that
can be implemented on ARMv8-A.
Flush-Based Cache-Related Attacks. In 2011, Gullasch [27] pro-
posed a cache-related attack technique, which first utilized clflush
instruction on Intel x86 processor. It greatly improves the resolu-
tion and reduces the noise of cache-related attack. Three years later,
Yarom and Falkner [81] designed the Flush+Reload attack, which ex-
tends Gullasch’s technique. The shared LLC (Last-Level-Cache) is
the target of Flush+Reload attack, which allows the spy and the vic-
tim process to execute in parallel on different execution cores. Subse-
quently, Flush+Flush attack is proposed by Gruss et al. [25] in 2016.
The Flush+Flush attack can be successfully implemented because
the x86 clflush execution time of the cached data is higher than the
data not cached. Also in 2016, ARMageddon was presented by Lipp
et al. [45], which showed that both Flush+Reload and Flush+Flush
attacks can be successfully implemented on ARMv8-A.

In addition to cache, branch prediction and out-of-order execution
are utilized by most modern processors to improve performance,
including ARMv8-A. However, recent research show that these
techniques bring huge security risks to the system. Specifically, in
2018, Kocher et al. [40] and Lipp et al. [46] released Meltdown and
Spectre attacks to the public, respectively. Subsequently, a series
of variant attacks [6, 9, 30, 39, 42, 49, 64, 76] have been released
one after another. Among them, there are five variants [6] that pose
security threats to ARMv8-A, namely Spectre-PHT [39, 40], Spectre-
BTB [40], Spectre-STL [30], Meltdown [46] and Meltdown-GP [6].
These variants are based on Flush+Reload, all of which require flush
instructions to successfully perform the attack.

All flush-based cache-related attacks have a common feature, that
is, the high resolution time measurement will be executed imme-
diately following a flush instruction. Thus, if the high resolution
timer is suddenly unavailable after a flush instruction is executed,
the attack would fail. Based on this idea, we design FlushTime, a

mechanism for collaboration between flush instructions and generic
timers.
Cache-Related Attacks without Flush. In fact, there are other
cache-related attacks [26, 45, 54, 67] that do not require flush instruc-
tions. In 2006, Osvik et al. [54] proposed the concepts of Evict+Time
and Prime+Probe. These two attacks can evict the target virtual ad-
dress from the cache line without the flush instructions. In 2015,
Gruss et al. [26] combined Evict+Time and Flush+Reload attacks
and proposed the Evict+Reload attack. Lipp et al. [45] successfully
implemented the Evict+Reload attack on ARMv8-A. After the Melt-
down and Spectre were made public, Trippel et al. [67] proposed
MeltdownPrime and SpectrePrime. These two attacks are based on
Prime+Probe attacks which do not need to utilize the flush instruc-
tions. Since there is no need for shared pages and flush instructions,
these attacks are sometimes more powerful than flush-based cache-
related attacks. However, all these cache-related attacks need to
obtain a physical address mapping [38] to evict the target virtual
address from the cache line, which increases the difficulty of the
attacks.

2.4 Defenses and Limitations
Hardware Defenses. For Meltdown, Spectre, and their variants, the
most effective defense path is to modify the hardware architecture.
In the past three years, researchers have proposed many schemes,
such as SafeSpec [37], Conditional Speculation [44], SpectreGuard
[19], ConTExT [60], Reuse-trap [16], SpecCFI [43], MuonTrap [4]
and GhostMinion [3]. Most of these defenses are effective against
speculative cache-related attacks and have a low performance over-
head. However, because they require modifications to the hardware
architecture, these defenses cannot be deployed on existing devices.
Software Runtime Defenses. Before the discovery of Meltdown
and Spectre, hardware performance counter was often utilized by re-
searchers [10, 83] to defend against cache-related attacks in real time.
However, these runtime defenses are only effective for Prime+Probe
and Flush+Reload. They cannot resist the latest Meltdown, Spectre,
and their variants. Currently, in the Linux kernel of ARMv8-A, there
are three runtime defenses that can effectively defend against specula-
tive cache-related attacks, namely KPTI (kernel page table isolation)
[23], Spectre-BTB mitigation [14] and Spectre-STL mitigation [87].
However, Each of these defenses targets only one particular variant.
They cannot cover all variants and Flush+Reload attacks. Moreover,
these defenses incur a certain performance overhead.
Static Code Fixing. Static code analysis/fixing defenses [35, 47, 73]
are effective for detecting and defending against flush-based cache-
related attacks. However, fixing the static code brings a significant
performance loss to the runtime system [73].
Browser Defenses. After Oren et al. [53] successfully implemented
their cache-related attack on the browser, browser vendors [11, 82]
and W3C [72] have changed the resolution of performance.now from
nanoseconds to 5 𝜇s. Unlike browsers, operating system cannot dis-
able the high resolution timer/API because many local applications
require it to function properly.

3 THREAT MODEL
Our assumptions about the attacker are as follows. First, the attacker
can execute her code on the same machine with the victim process.

3

Attackers do not have the root privilege and cannot use other attack
methods to tamper with the kernel code or escalate privileges to ob-
tain sensitive system information. This makes it somewhat difficult
for an attacker to obtain the physical address mapping. Although
a more sophisticated attacker [61] can still launch cache attacks
without obtaining physical address mapping, this requires the at-
tacker to be able to design fully automated methods to generate
an eviction sets for a given virtual address. In our attack scenario,
we assume that the attacker does not have the ability to design an
effective eviction strategy. This assumption determines that attack-
ers cannot implement cache-related attacks without flush, such as
Prime+Probe, Evict+Reload, MeltdownPrime, and SpectrePrime.
Second, the attacker knows the source code and address layout of
the victim process or kernel. There is shared memory between the
attacker process and the victim process, so attackers can rely on the
flush instructions to clean up the cache lines of the shared pages and
leak information. These two assumptions determine that attackers
can implement flush-based cache-related attacks, but cannot conduct
cache-related attacks without flush.

4 DESIGN OF FLUSHTIME
In this section, we first detail the entire design of FlushTime. Then,
we provide details of the relationship between the flush instructions
and the generic timer in the FlushTime-enabled system. Finally, we
give a description of the two most important parameters in the design
of FlushTime.

4.1 Overview of FlushTime
FlushTime is a mechanism for the cooperation between flush instruc-
tions and generic timer on ARMv8-A Linux system. According to
the introduction of the generic timer in Section 2.2, CNTVCT_EL0
is the only timer that can be directly accessed at the EL0 level
(user space). Therefore, in the design of FlushTime, the cooperation
between the flush instructions and the generic timer is actually the
cooperation between the flush instructions and CNTVCT_EL0. When
a flush instruction is called, the resolution of the generic timer will
be reduced for a certain period of time. The low resolution duration
is granular in context_switch(). In other words, this duration is a
certain number of context_switch(). We give this number a name
called NumCSLR, which represents the number of context_switch()
in low resolution state. The reason why context_switch() is chosen as
the time granularity is that the same processor core clears all the data
in the cache hierarchy during the context switch process. Therefore,
this time granularity can effectively prevent sensitive data in the
cache hierarchy from being stolen. A more detailed explanation of
NumCSLR is in Section 4.3. An overview of FlushTime is shown
in Figure 1. As can be seen in Figure 1, the design of FlushTime is
divided into four aspects as follows.

First, modify the default configuration of Linux to trap flush in-
structions and generic timer into the EL1 level (kernel space). This
is the basis of FlushTime framework. The first reason to trap them is
that it is difficult to design cooperation mechanisms for them without
trapping them into EL1 level. More secure cooperative APIs can
be designed in the library code of user space, but the cooperation
mechanism of the flush instructions and generic timer cannot be im-
plemented in user space (EL0 level). Moreover, attackers can execute

Figure 1: Overview of FlushTime on ARMv8-A Linux. LRD-
Counter represents the low resolution delay counter, which
counts the number of context_switch() in low resolution state.

arbitrary malicious code in the user space of EL0 level, including
direct calls a flush instruction or direct access to the generic timer.
Thus, they can destroy or bypass the cooperative API mechanism of
EL0 level. In the threat model of this paper, the attacker does not
have access to the kernel space. Therefore, trapping flush instruc-
tions and generic timer into EL1 level and designing a cooperative
mechanism in the kernel space is not only easier to implement, but
also prevents attackers from destroying or bypassing it.

Second, modify the interrupt handler of the flush instructions. Af-
ter the flush instructions are trapped into EL1 level, the interrupt will
be processed by user_cache_maint_handler(). In the original version
of the handler, the flush instructions would be executed directly in
EL1 level. In the design of FlushTime, a new operation is added to
this handler. This operation is to send the reduced resolution trigger.
The trigger signal is used to reset the value of the low resolution de-
lay counter to NumCSLR. We give this low resolution delay counter a
name called LRDCounter. The LRDCounter is utilized to count con-
text_switch() to ensure that the low resolution state of generic timer
lasts for a certain number of context_switch(). The main workflow
of user_cache_maint_handler() is shown in Algorithm 1.

Algorithm 1: user_cache_maint_handler() in FlushTime

Input: Virtual address to be flushed: vir_addr;
Output: Low resolution delay counter : LRDCounter;

1 Flush the cache line of vir_addr ;
2 Store NumCSLR into LDRCounter;
3 Return to EL0;

Third, modify the context switch of the process. When the ker-
nel handles the context switch of the process, it needs to run the
context_switch() function. In the design of FlushTime, we modify

4

Figure 2: Relationship between flush instructions and generic timer when FlushTime is enabled. NumCSLR is the number of
context_switch() in low resolution state.

the original context_switch() function to count the number of con-
text_switch() by itself. We add LRDCounter to the context_switch()
function. Each time context_switch() is performed, LRDCounter is
decremented by one. When the kernel handles the generic timer
interrupt, it needs to access LRDCounter to determine whether the
resolution needs to be reduced or restored.

Fourth, modify the interrupt handler for accessing the generic
timer. In Linux kernel, the handler cntvct_read_handler() handles
the interrupt for accessing CNTVCT_EL0. In the original version
of the interrupt handler, it is only necessary to read the value of
CNTVCT_EL0 at EL1 level and return it to EL0 level. In the design
of FlushTime, we modified this handler so that it can automatically
adjust the resolution of the returned value. This interrupt handler
needs to query the value of LRDCounter to decide whether to reduce
the resolution of the return value or not. If the value of LRDCounter
is not 0, the resolution needs to be reduced. Resolution reduction is
achieved by masking the least significant bits of the returned value.
We give the number of low resolution masked bits a name called
NumLRMB. Otherwise, the resolution of the value returned to EL0
level is not reduced. Algorithm 2 shows how cntvct_read_handler()
works.

Algorithm 2: cntvct_read_handler() in FlushTime

Input: Low resolution delay counter : LRDCounter;
Output: Time read from CNTVCT_EL0 : CNTVCTime;

1 Read CNTVCT_EL0 into CNTVCTime ;
2 if (LRDCounter!=0) then
3 Reduce the resolution of CNTVCTime by NumLRMB bits;
4 end
5 else
6 Keep the high resolution of CNTVCTime;
7 end
8 Return CNTVCTime to EL0;

4.2 Relationship between Flush Instructions and
Generic Timer

In the design of FlushTime, the cooperative mechanism of the flush
instructions and the generic timer is the key to the defense ability.
Therefore, in this subsection, we describe in detail the relationship

between the flush instructions and the generic timer when the system
is running. Figure 2 shows the relationship between the two in an
overview. In Figure 2, the vertical black arrows represent the flush
instructions called in the malicious process. The yellow color indi-
cates that the generic timer in the processes is in the low resolution
state. In contrast, the green color means that the generic timer in the
processes is in the high resolution state.

As shown in Figure 2, in our FlushTime design, after malicious
process 1 invokes the flush instructions, the resolution of the generic
timer is reduced immediately. This low resolution state will last for
NumCSLR times of context_switch(). If the time interval between two
flush instructions is less than NumCSLR times of context_switch(),
the generic timer will remain in a low resolution state and LRD-
Counter will constantly be reset to NumCSLR. In other words, the
low resolution state of the generic timer will last NumCSLR times of
context_switch() after the last flush instruction is called.

As can be seen from Figure 2, during the time interval between
the first and second occurrence of malicious process 1, the flush in-
struction is called very frequently, and the interval between two flush
instructions is much less than NumCSLR times of context_switch().
Therefore, during this period, the generic timer of all processes is
always in a low resolution state. The last flush instruction call occurs
at the end of the second occurrence of malicious process 1.

From this point in time, the low resolution state of the generic
timer is maintained for NumCSLR times of context_switch(), and
then the high resolution state is restored. On the timeline of the
third appearance of the malicious process 1, it is yellow through-
out. In other words, during the period of NumCSLR times of con-
text_switch(), regardless of whether the malicious process 1 calls the
flush instructions or not, the resolution of its generic timer is always
low. The same is true for other processes such as the normal process
k, whose generic timer resolution is always low.

After NumCSLR times of context_switch() expire, the resolution
of generic timer returns to normal. As can be seen from Figure 2, the
normal process m is completely green, which means the resolution of
its generic timer is always high. This green time period is dangerous
because attackers can get high resolution timestamps during this
period. To ensure the security of the system, it is especially important
to choose an appropriate NumCSLR.

5

4.3 NumLRMB and NumCSLR
In the design of FlushTime, there are two parameters that are critical
to security, namely NumLRMB and NumCSLR. The full name of
NumLRMB is the number of low resolution masked bits, which
represents the number of bits that need to be masked when the
generic timer is in the low resolution state. In theory, to ensure the
security of FlushTime, the number of masked bits must make the
time difference between reading the cached data and the data not
cached to be 0. We determined the optimal value of NumLRMB by
repeated attack experiments. In Section 6.2, we demonstrate our
selection of this parameter in detail with experimental results.

Similar to NumLRMB, the optimal value of NumCSLR is also
obtained by a combination of theory and experiment. NumCSLR
is shorthand for the number of context_switch() in low resolution
state. In a multi-process system, the context switching process of
the same processor core will completely clear the data in the cache
hierarchy. That is to say, before the context switching process of
the same core, there is still sensitive data in the cache. On a single-
core processor, context switching for all processes is done on the
same core. Therefore, 𝑁𝑢𝑚𝐶𝑆𝐿𝑅 == 1 can ensure the security of
sensitive data on a single-core processor. However, on multi-core
processors, different processes can execute in parallel on multiple
cores. To ensure the security of FlushTime in a multi-core multi-
process system, the processor core that invokes a flush instruction
must perform more than one context switching process during the
low resolution state of the generic timer. Theoretically, to achieve
this goal, NumCSLR should be greater than or equal to the number
of all processor cores on the platform. The results in Section 6.2
show the correctness of our theoretical analysis of NumCSLR.

5 IMPLEMENTATION
Section 4 focuses on the design principle of FlushTime. In this
section, we describe the implementation of FlushTime in five aspects
in detail.
Trap flush instructions and CNTVCT_EL0. As described in Sec-
tion 2.1 and Section 2.2, the bit SCTLR_EL1.UCI controls the trap-
ping of flush instructions, while the trapping of CNTVCT_EL0 is
controlled by the bit CNTKCTL_EL1.EL0VCTEN. Under Linux de-
fault settings, both flush instructions and access to CNTVCT_EL0
can be executed at EL0 level because SCTLR_EL1.UCI == 1 and
CNTKCTL_EL1.EL0VCTEN == 1. In the design of FLushTime,
both SCTLR_EL1.UCI and CNTKCTL_EL1.EL0VCTEN need to be
set to 0. On the other hand, each CPU core has its own SCTLR_EL1
and CNTKCTL_EL1, so FlushTime needs to modify the settings
for each CPU core. To set the two registers for each CPU core, we
utilize the ready-made kernel function on_each_cpu() [85], which
can call a function on all CPU cores. In addition, in order to make
the system more secure, FlushTime should set these two registers
as early as possible during Linux boot process. Therefore, in the
design of FlushTime, we insert the setting operation of these two
registers into the process of Linux multi-core startup. Specifically,
FlushTime completes the correct setting of these two registers at the
end of smp_init().
Modifications to user_cache_maint_handler(). In the design of
FlushTime, in addition to the basic function of cleaning a cache
line, user_cache_maint_handler() has to complete one additional

operation to trigger the LRDCounter to count. We define a kernel
global variable LRDCounter. The meaning of LRDCounter has been
described in Section 4.1. We declare this global variable with EX-
PORT_SYMBOL() and make it visible throughout the kernel. When
entering user_cache_maint_handler(), LRDCounter is directly as-
signed to NumCSLR.
Modifications to context_switch(). The modification of the func-
tion context_switch() is very simple, mainly adding the operation
of subtracting 1 from LRDCounter. Each time the context_switch()
function is executed, LRDCounter is decremented by one. This
operation will not stop until LRDCounter reaches 0. Because LRD-
Counter is a global variable, context_switch() can access it directly
after declaring LRDCounter with extern.
Modifications to cntvct_read_handler(). The basic execution flow
of cntvct_read_handler() is to read the value of CNTVCT_EL0 and
return it to EL0. The value of CNTVCT_EL0 is read by the kernel
function arch_timer_read_counter(). In other words, the return value
of cntvct_read_handler() is the return value of the kernel function
arch_timer_read_counter(). Therefore, we can adjust the resolu-
tion of the return value of EL0 by adjusting the resolution of the
return value of arch_timer_read_counter(). On the other hand, the
interrupt handler cntvct_read_handler() needs to know the value of
LRDCounter to determine if the resolution should be reduced. After
getting the value of LRDCounter , cntvct_read_handler() will first
determine whether LRDCounter == 0 is true. If the result is true,
cntvct_read_handler() reduces the resolution of the returned value.
Otherwise, cntvct_read_handler() does not adjust the resolution of
the returned value. The way to reduce the resolution is to mask the
last NumLRMB bits of the return value. In other words, each masked
bit is bitwise ANDed (&) with 0.
Synchronizing the Concurrent Accesses to LRDCounter. In the

implementation of FlushTime, it is very critical to solve the concur-
rent access of LRDCounter. In the initial version of FlushTime, we
created a very large two-dimensional array LRDCounter[4096][2].
Each LRDCounter[index][0] stores the pid of the process calling the
flush instruction, and LRDCounter[index][1] stores the count of the
context_switch of the corresponding process. We set the maximum
value of index to 4096 to ensure enough space to store all malicious
process pids. This implementation can ensure that each process has
its own unique LRDCounter, which can effectively avoid problems
caused by concurrent access of multiple processes. However, this
implementation has two fatal shortcomings. First of all, this design
makes it necessary to traverse all the pids stored in LRDCounter
every time the flush instruction is called, which greatly increases
the performance overhead of the flush instruction call. Second, even
if the maximum value of index is set to 4096, an attacker can use
the fork() function to create more than 4096 processes to fill up
all LRDCounters, and then create another attack process to launch
an effective cache attack. Our approach to solving this problem is
to simplify complex problems. Since giving each process a unique
LRDCounter is expensive and not secure enough, we assume that all
processes calling the flush instruction are the same attacker. In other
words, all processes share one LRDCounter. When any process calls
the flush instructions, it will reset this unique LRDCounter to Num-
CSLR. Any process entering context_switch function will decrement
this unique LRDCounter by one.

6

6 EVALUATION
In this section, we show the security and performance evaluation.
First, our evaluation environment is introduced in Section 6.1. Then,
we explain the selection of optimal values for two important param-
eters NumLRMB and NumCSLR in 6.2. In Section 6.3, we describe
the security evaluation results. Finally, we provide the performance
evaluation results in Section 6.4.

6.1 Environment Setup
Our main experimental platform is Huawei TaiShan 200 (Model
2280) server [32]. It has two HiSilicon Kunpeng 920-4826 CPUs
[29] with a total of 96 ARMv8-A cores. The platform also has
384GB of DDR4 memory and 2.181TB of hard drive storage. We
implemented FlushTime and other defense solutions based on Linux
kernel 5.4.128 running in Ubuntu 20.04.2 LTS on TaiShan 200 server.
The cross compiler we utilize is aarch64-linux-gnu- with the gcc
version of 9.3.0. In addition, in Section 6.2, we also test the two
parameters NumLRMB and NumCSLR on another two platforms,
Raspberry Pi 4B [18] and ZCU102 [80]. The CPU on Raspberry Pi
4B has four Cortex-A72 cores. The Linux kernel version running on
it is 5.15.34, and the compiler running on this board is gcc version
of 11.3.0. ZCU102 is designed based on Xilinx Zynq UltraScale+
MPSoC, which has 4 Cortex-A53 cores. The version of Linux kernel
running on ZCU102 is 4.14.0-xilinx-v2018.2. The cross compiler
we use on this board is petalinux-2018.2.

6.2 Selection of NumLRMB and NumCSLR
In the design of FlushTime, the two parameters NumLRMB and Num-
CSLR play a key role in resisting flush-based cache-related attacks.
To maximize the resolution of the generic timer in the dangerous
interval, the parameter NumLRMB should be as small as possible
while ensuring security. Similarly, NumCSLR should also be as small
as possible to ensure that the time interval of the low resolution state
is as short as possible. In Section 4.3, we theoretically analyze the
optimal values of NumLRMB and NumCSLR. In this subsection, we
provide experimental results for these two parameters to show that
our theoretical analysis is correct.

We utilize the method of repeated attack to select the optimal
values of NumLRMB and NumCSLR. These experiments are based
on two attacks, Flush+Reload and flush-based Spectre-BTB attack.
In our Flush+Reload attack, the target we selected is the secret key of
AES T-Table implementation of OpenSSL 1.1.0. In order to obtain
reliable experimental results, we modified the Flush+Reload attack
code based on multi-process, so that it has 100 processes during the
attack. [1]. Many studies [7, 25, 26, 45, 54] have presented that AES
T-Table implementation is very vulnerable to cache-related attacks.
We select the Te0 table in the AES implementation as the target
addresses to crack the secret key. The 256 elements of the Te0 table
are divided into 16 equal parts. Each 16 elements are in the same
cache line. If the correct cache line is found, it indicates that attack
succeeds once. According to the random distribution principle of
probability, if the success rate of repeated attack is reduced to about
1/16, it means that the Flush+Reload attack fails.

In our Spectre-BTB attack experiments, we port the Kocher’s
Spectre-BTB attack code on x86 [40] to our ARMv8-A platform.
Like the Flush+Reload attack, the Spectre-BTB attack also executes

100 processes at the same time. Moreover, we slightly modify the
code to attack only one byte at a time. Cracking the byte means
the attack succeeds once. There are a total of 256 possibilities for
a value of a byte. If the success rate of repeated attack is reduced
to about 1/256, it indicates that the flush-based Spectre-BTB attack
fails.

Figure 3: The relationship between the parameter NumLRMB
and attack success rate on TaiShan 200 server. Both the two
attacks are multi-process attacks that execute 100 processes. The
red line represents the optimal value of NumLRMB.

Figure 3 shows the relationship between the parameter NumLRMB
and the success rates of the two flush-based cache-related attacks
on TaiShan 200 server. (The parameter NumCSLR is set to 1,000,
which is a safe enough value.) As can be seen from Figure 3, the
overall trend of the success rates of the two attacks decreases as
NumLRMB increases. Starting from NumLRMB == 6, the drop in
the attack success rate begins to be obvious. This shows that the time
difference between reading the cached data and the data not cached
decreases significantly after the precision of the timestamp drops
by more than 6 bits. When the parameter NumLRMB increases to
12, the success rate of Flush+Reload attack is reduced to about 1/16.
Correspondingly, the success rate of flush-based Spectre-BTB attack
is reduced to about 1/256 when NumLRMB == 12. Therefore, we
believe the optimal value of NumLRMB is 12, which is the value we
finally select in the design of FlushTime.

Figure 4: The relationship between the parameter NumCSLR
and attack success rate on TaiShan 200 server. Both the two
attacks are multi-process attacks that execute 100 processes. The
red line represents the optimal value of NumCSLR

The relationship between the parameter NumCSLR and the suc-
cess rates of the two attacks are shown in Figure 4. Both of the

7

(a) Flush+Reload attack on original Linux
without any defenses.

(b) Flush+Reload attack when flush instruc-
tions and generic timer are trapped into
EL1.

(c) Flush+Reload attack when FlushTime is
enabled (NumCSLR==96). The resolution
of the generic timer is reduced by 12 bits in
real time (NumLRMB==12).

Figure 5: Flush+Reload attacks on different system setups. It is a multi-process attack that execute 100 processes. The depth of the
color corresponds to the number of cache hits in 1000 AES T-Table encryptions.

two attacks are based on multi-process methods, that is, multi-core
parallel execution of attack code. As can be seen from Figure 4,
when NumCSLR==79, the attack success rate begins to drop sharply.
This is because on our 96-core experimental platform, due to the
interference of other system processes, the 80th context_switch() has
a high probability to occur on the processor core that called the flush
instruction. Therefore, sensitive data on the processor core has a high
probability of being cleared. As the value of NumCSLR continues to
increase, the probability of successful attack continues to decrease.
When NumCSLR == 96, the success rate of Flush+Reload attack
decreases to about 1/16. At this point, the success rate of flush-based
Spectre-BTB attack is reduced to about 1/256. Therefore, the optimal
value of NumCSLR that we finally select is 96.

To further study the selection of the two parameters NumLRMB
and NumCSLR, we conducted tests on different hardware platforms.
Table 1 shows the optimal values of NumLRMB and NumCSLR on
different hardware platforms. From the results in Table 1, it can
be seen that the optimal value of NumCSLR is consistent with the
corresponding number of CPU cores on the platform. However,
the relationship between the optimal value of NumLRMB and the
hardware platform is not clear. And there is no obvious regularity to
follow. According to the estimation of the experimental results, the
optimal value of NumLRMB is distributed in the interval of [12, 15].
Analyzing from the hardware level, the main reason affecting the
optimal value of NumLRMB is the speed of accessing cache and
memory. When the time to access cache and memory is shorter, the
number of different bits between cache hit and cache miss is less, so
the optimal value of NumLRMB is smaller. The cache and memory
access time on TaiShan 200 server platform is better than the other
two platforms, so NumLRMB of TaiShan 200 server is smaller than
the other two platforms.

Table 1: Selection of NumLRMB and NumCSLR on different
hardware platforms.

Platform # ARMv8-A cores NumLRMB NumCSLR
TaiShan 200 96 12 96
Raspberry Pi 4B 4 14 4
ZCU102 4 15 4

6.3 Security Analysis
To show that FlushTime can effectively defend against all flush-
based cache-related attacks, we run comparative attack experiments
on Linux systems with different settings. The first system setup
is the original Linux kernel, which is the Linux kernel without
any defenses configured. The second system setup is the Linux
kernel trapping flush instructions and timers. In this setup, both the
flush instruction and the generic timer are trapped to EL1, but no
cooperative mechanism is implemented. The third system setting is
the Linux kernel with FlushTime enabled. To more intuitively show
the defense capabilities of FlushTime, we provide the attack results
of Flush+Reload, Flush+Flush, and Spectre-BTB in the form of
pictures, as shown in Figure 5, Figure 6, and Figure 7, respectively.
Finally, we summarize all cache-related attack results in Table 2.
Flush+Reload and Flush+Flush Attacks. In our Flush+Reload
and Flush+Flush attack experiments, we chose the same target
as in Section 6.2, also the secret key of AES T-Table implemen-
tation of OpenSSL 1.1.0. In the FlushTime-enabled system, we
assign optimal values to NumLRMB and NumCSLR respectively
(NumLRMB == 12,NumCSLR == 96). Similar to Section 6.2, we
modified the original code of Flush+Reload and Flush+Flush attacks
by multi-process to attack with more than 100 processes.

Figure 5 and Figure 6 show the results of the Flush+Reload and
Flush+Flush attacks on the Linux system under different settings.
The horizontal axis represents the index of the flushed cache line.
Meanwhile the vertical axis indicates the offset address relative to
the first address of Te0 table in the AES implementation. Since we
set the first byte of the secret key 𝑘0 to 0𝑥00, the vertical axis of
Figure 5 and Figure 6 also corresponds to (𝑝0 ⊕ 𝑘0 = 𝑝0). The first
byte of plaintext 𝑝0 is increased from 0 to 255 with a step increment
of 16. In each offset address of each cache line index, we encrypt
the 128-bit plaintext 1,000 times. In Figure 5 and Figure 6, the depth
of the color in each grid represents the number of cache hits. If the
main diagonal is a straight line of light color, it indicates that our
Flush+Reload or Flush+Flush attack is successful.

Our Flush+Reload attack result on the original Linux without
any defense is shown in Figure 5a. As can be seen from Figure
5a, Flush+Reload attacks on the original Linux are significantly
successful. Figure 5b gives the attack result using the trapped flush
instructions and generic timer. These trapped instructions and timer
do not have any cooperative mechanism in kernel space. In Figure 5b,
the light color of the main diagonal is very obvious, which indicates

8

(a) Flush+Flush attack on original Linux
without any defenses.

(b) Flush+Flush attack when flush instruc-
tions and generic timer are trapped into
EL1.

(c) Flush+Flush attack when FlushTime is
enabled (NumCSLR==96). The resolution
of the generic timer is reduced by 12 bits in
real time (NumLRMB==12).

Figure 6: Flush+Flush attacks on different system setups. It is a multi-process attack that execute 100 processes. The depth of the color
corresponds to the number of cache hits in 1,000 AES T-Table encryptions.

(a) Spectre-BTB attack on origi-
nal Linux without any defenses.

(b) Spectre-BTB attack when
flush instructions and general
timer are trapped into EL1.

(c) Spectre-BTB attack when
FlushTime is enabled (NumC-
SLR==96). The resolution of the
generic timer is reduced by 8 bits
in real time (NumLRMB==8).

(d) Spectre-BTB attack when
FlushTime is enabled (NumC-
SLR==96). The resolution of
the generic timer is reduced
by 12 bits in real time (NumL-
RMB==12).

Figure 7: Spectre-BTB attacks on different system setups. It is a multi-process attack that execute 100 processes. ‘?’ represents a
character that has not been cracked.

that the attack is still successful using these trapped instructions and
timer. This result shows that only trapping flush instructions and
generic timer into EL1 has no mitigation effect on the Flush+Reload
attack. Figure 5c corresponds to the attack result when FlushTime
is enabled. From Figure 5c we can see that the color distribution
of the grids is very random. There is no obvious color difference
between the main diagonal and other grids. These results fully prove
that FlushTime is very effective to resist Flush+Reload attack.

Flush+Flush attack experiment is very similar to Flush+Reload.
Figure 6 shows the results of Flush+Flush attack on the Linux sys-
tems under different settings. Whether there is an obvious color
difference between the main diagonal and other grids is the criterion
for judging whether Flush+Flush attack is successful. As can be seen
from Figure 6a and Figure 6b, the main diagonals in both subplots
are lighter in color than the other grids. Therefore, Flush+Flush
attack succeeds on the system without any defenses or trapping flush
instructions and generic timers into EL1. However, in Figure 6c, all
the grid colors are random, and the main diagonal is not an obvious
light-colored line. It shows that Flush+Flush attack completely fails
when FlushTime is enabled. These comparison results prove that
FlushTime is very effective to resist Flush+Flush attack.

Spectre-BTB Attacks. In our Spectre-BTB attack experiments, We
utilized the same multi-process attack code as in Section 6.2. The
target of Spectre-BTB attack is an 11×9 character matrix consisting
of ‘F’ and space characters. All the space characters make up the
shape of the diamond. This character matrix is sensitive data of the
victim process. Figure 7 shows the results of Spectre-BTB attack on
different system setups. The character ‘?’ in Figure 7 represents the
character that failed to crack. As can be seen from Figure 7a and
Figure 7b, There is not a single ‘?’ in the character matrix. That is,
all characters are cracked out. It indicates that neither the system
without any defenses nor the system trapping flush instructions and
generic timers can withstand the Spectre-BTB attack.

Since the attack results of Spectre-BTB are more intuitive, we
tested the impact of FlushTime resolution on the attack success rate
in Spectre-BTB attack experiments. Figure 7c and Figure 7d show
the results of Spectre-BTB attack on a FlushTime-enabled system.
As can be seen from the two pictures, Most characters in the charac-
ter matrix are ‘?’ if NumLRMB == 8. And whenNumLRMB == 12,
all characters in the character matrix become ‘?’. It indicates that
FlushTime has a good mitigation effect on Spectre-BTB attacks.
However, if there are not enough bits of resolution reduction, Flush-
Time’s mitigation capability becomes worse. In fact, NumCSLR has

9

a similar impact on Spectre-BTB attacks as NumLRMB. Therefore,
we no longer list the comparative experimental results of different
NumCSLR here.

Table 2: Security Evaluation of FlushTime

Attack Classification Mitigation Capability
Prime+Probe [54] #

Evict+Reload [26] #

Flush+Reload [81] !

Flush+Flush [25] !

Spectre-PHT [39, 40] !

Spectre-BTB [40] !

Spectre-STL [30] !

SpectrePrime [67] #

Meltdown [46] !

Meltdown-GP [6] !

MeltdownPrime [67] #

Summary. In addition to the above three attacks, we have tested all
cache-related attacks that can be implemented on ARMv8-A, includ-
ing cache-related attacks with and without flush instructions. Table
2 summarizes the evaluation results of these attacks. As can be seen
from Table 2, FlushTime is powerless to cache-related attacks that do
not require flush instructions, such as Prime+Probe, Evict+Reload,
SpectrePrime, and MeltdownPrime. However, as described in Sec-
tion 2.3, Prime+Probe, Evict+Reload, SpectrePrime, and Meltdown-
Prime attacks require the physical address mapping, which is outside
the scope of our threat model. More importantly, FlushTime has good
mitigation capabilities against all flush-based cache-related attacks,
including Flush+Reload, Flush+Flush, Spectre-PHT, Spectre-BTB,
Spectre-STL, Meltdown, and Meltdown-GP, which are the attacks
that our threat model focuses on.

6.4 Performance Analysis
In this subsection, we first test the comparative latency of calling
flush instructions, accessing the generic timer and calling the time
API. Then, we use UnixBench [48] to test the performance overhead
of critical operations of Linux system. Finally, we provide the per-
formance overhead of real user applications in Linux system using
SPEC_CPU 2017 benchmark [62]. In the evaluation experiment of
UnixBench and Spec_CPU 2017, we selected three defense schemes,
namely KPTI (kernel page table isolation) [23], Spectre-BTB miti-
gation [14] and Spectre-STL mitigation [87], as the comparison of
FlushTime. The reason why these three defense schemes are chosen
for comparison is that they have two similarities with FlushTime.
First, these three solutions, like FlushTime, do not need to change the
hardware, only need to modify the operating system kernel. Second,
these three solutions, like FlushTime, can be deployed on ARMv8-A
platforms. Based on the above two similarities, this comparative
evaluation is valuable.
Flush Instructions, Generic Timer and Time API. We first test the
latency of FlushTime on calling flush instructions, accessing generic
timer and calling clock_gettime() API. Table 3 shows the average
time delay for all these operations. We use the instruction ‘MRS

Table 3: Average time delay of calling flush instructions, calling
API and accessing generic timer.

Instruction, API
or timer

Original Linux time
delay (cycle)

FlushTime enabled
time delay (cycle)

CNTVCT_EL0 12.14 27.73 (127%)
clock_gettime() 103.02 115.29 (19%)
DC CIVAC 38.21 28.15 (-26%)
DC CVAU 69.33 26.98 (-61%)
DC CVAC 69.58 28.11 (-60%)

X0 CNTVCT_EL0’ to read the value of CNTVCT_EL0. As can be
seen from Table 3, the largest increase in time delay is accessing the
generic timer CNTVCT_EL0, with an overhead of about 127%. This
is mainly because the time delay of accessing the general timer at
EL0 is small. After the timer is trapped, the access time is added
with the time from EL0 to EL1 and back from EL1 to EL0. Calling
clock_gettime() also adds a similar time delay. However, due to the
large time delay of calling the time API at EL0, the overhead is
only 19%. For the flush instruction, we tested three instructions
DC CIVAC, DC CVAU and DC CVAC respectively. Interestingly,
after the flush instructions are trapped into EL1, the time delays
for calling them did not increase, but decreased. The reason is that
calling the flush instructions at EL1 has a shorter latency than calling
the flush instructions at EL0. Therefore, despite the increased time
to enter and leave EL1, calling these trapped flush instructions is
still faster. Overall, the performance impact of FlushTime on calling
instructions, calling API, and accessing generic timer is acceptable,
and in some respects even better than the original calls and accesses.
UnixBench. UnixBench [48] is designed to provide a basic indicator
of the performance of a Unix-like system. To test the performance
overhead of critical operations of the kernel and the system, we
perform UnixBench under 5 system settings. Figure 8 shows the
comparative evaluation results of UnixBench. In Figure 8, the five
colors represent the five system settings. The white columns rep-
resent the original Linux without any defenses. The blue columns
are FlushTime-enabled Linux systems. Yellow means that the Linux
system only has KPTI defense mechanism [23]. The purple column
is the Linux system with only Spectre-BTB mitigation mechanism
[14]. Green means that the Linux system only has the mechanism to
defend against Spectre-STL [87]. As can be seen from Figure 8, ex-
cept for Context Switching, all other individual tests did not increase
significantly. The reason for the increase of Context Switching test
is mainly because we have increased the count and access of LRD-
Counter in context_switch() function, which adds extra overhead.

Overall, Spectre-BTB mitigation has the largest total overhead
on UnixBench, which is as high as 9.5%. This is mainly because
Spectre-BTB mitigation weakens the branch prediction ability of
the CPU, resulting in a dramatic increase in Context Switching and
Shell Scripts. The total overheads of the Spectre-STL mitigation and
the KPTI scheme are 4.9% and 3.5%, respectively. The overhead
added by KPTI scheme is mainly concentrated in Shell Scripts, while
Spectre-STL mitigation has the greatest impact on Context Switching.
Correspondingly, FlushTime’s UnixBench has a total overhead of
just 1.2%. This result indicates that FlushTime has much less impact

10

Figure 8: Evaluation results of UnixBench.

Figure 9: SPEC2017 benchmark results.

on the critical operations of kernel and system than the other three
defenses.
SPEC_CPU 2017. SPEC_CPU 2017 suites [62] provide a compar-
ative measure of compute-intensive performance using workloads
developed from real user applications. Thus, we utilize SPEC_CPU

2017 to compare the impact of FlushTime and other defenses on
user application performance. We evaluate all of SPEC_CPU 2017
INT and FP applications under five system settings. These 5 system
settings are the same as UnixBench tests. Figure 9 shows the eval-
uation results of SPECrate2017 benchmark. As shown in Figure 9,

11

FlushTime has a high overhead in the fotnik3d test. This is mainly
because the fotnik3d application calls context_switch() frequently.
On the other hand, Spectre-BTB mitigation and Spectre-STL mit-
igation have more overhead than FlushTime in fotnik3d tests. The
reason is that Spectre-BTB mitigation and Spectre-STL weaken
the CPU’s branch prediction and speculative execution respectively,
which greatly affects the performance of fotnik3d.

Overall, in the SPEC_CPU 2017 tests, the Spectre-BTB mitiga-
tion has the highest total overhead at 0.67%. In addition to fotnik3d
mentioned above, Spectre-BTB mitigation also has a certain impact
on the performance of perlbench, gcc, omnetpp, xz and lbm. The
reason is that these user applications are sensitive to branch predic-
tion. Followed by KPTI scheme and Spectre-STL mitigation, the
total overhead is 0.5% and 0.33% respectively. Among these user
applications, lbm and cam4 are most affected by KPTI. Correspond-
ingly, Spectre-STL mitigation increases the performance overhead
of bwaves and fotnik3d significantly. FlushTime’s total overhead is
only 0.17%. This result shows that FlushTime has less performance
impact on user applications than the other three defenses.

7 RELATED WORK
In this section, we first present several software runtime defenses
against cache-related attacks similar to FlushTime. Then, we detail
defense schemes for modifying the hardware architecture.
Software Runtime Defenses. There are several effective studies on
software runtime defense against Prime+Probe, Flush+Reload and
Flush+Flush attacks. HomeAlone [84] utilizes the same side channel
(L2 cache) as attackers to detect Prime+Probe attacks. It allows
the tenant to remotely check if the tenant’s own VMs are physically
isolated. CloudRadar [83] was proposed for real-time defense against
Prime+Probe and Flush+Reload attacks. It combines both anomaly-
based and signature-based techniques using hardware performance
counters. Secure Collaborative APIs (SCAPI) [20] enables flush
and time APIs to cooperate with each other to resist Flush+Reload
and Flush+Flush. This cooperation mechanism is similar to that of
FlushTime, but FlushTime is more low-level.

There are also some effective software runtime defenses against
Spectre, Meltdown, and their variants. Return Trampoline (retpoline)
[70] are proposed by Google to defend against Spectre-BTB. It is a
software mitigation technique that replaces indirect branches with
push+return instruction sequences that prevent BTB poisoning. ker-
nel Page-Table Isolation (KPTI) [23] was proposed to defend against
attacks on KASLR [24, 33]. Since it ensures no valid mapping to
kernel space in user space, it can also prevent Meltdown. EPTI [31]
was proposed to resist Meltdown attack in cloud. It can be applied
to unpatched VMs and with less overhead than KPTI. Addition-
ally, Spectre-BTB mitigation [14] and Spectre-STL mitigation [87]
are two software runtime schemes in the Linux kernel, which are
provided by Linux open source community.
Hardware Defenses. Many researchers modify the hardware archi-
tecture to resist Meltdown, Spectre, and their variants. SafeSpec
[37] stores side effects of speculative instructions in separate struc-
tures until they commit to support leakage-free speculation. Con-
ditional Speculation [44] introduces the concept of security depen-
dence to mark speculative memory instructions which could leak
information with potential security risk. SpectreGuard [19] mark

sensitive memory blocks using simple OS/library API, and then se-
lectively protect them by hardware from Spectre attacks via low-cost
micro-architecture extension. ConTExT [60] requires minimal, fully
backward-compatible modifications of applications, compilers, op-
erating systems, and the hardware to offer full protection for secrets
in memory and secrets in registers.

Reuse-trap [16] repurposes a classic cache performance metric
namely, reuse distance, to capture the activity of an adversary in
cache timing channels. It is an efficient cache side channel miti-
gation framework to record reuse distances during victim accesses
and carefully inject noise to mislead the spy from inferring the vic-
tim’s activity. SpecCFI [43] utilizes Control-Flow Integrity (CFI)
on the committed path, to prevent speculative control-flow from
being hijacked to launch the most dangerous variants of the Spectre
attacks (Spectre-BTB and Spectre-RSB). MuonTrap [4] prevents the
propagation of any state based on speculative execution, by placing
the results of speculative cache accesses into a small, fast L0 filter
cache, that is non-inclusive, non-exclusive with the rest of the cache
hierarchy. It isolates all parts of the system that can’t be quickly
cleared on any change in threat domain. GhostMinion [3] is a cache
modification built using a variety of new techniques designed to
provide Strictness Order, which can comprehensively eliminate tran-
sient side channel attacks while allowing complex speculation and
data forwarding between speculative instructions.

In addition, there is a category of hardware defense solutions that
specifically focus on Cache Set Randomization. ScatterCache [77]
makes eviction-based cache attacks unpractical because it eliminates
fixed cache-set congruences. ClepsydraCache [66] utilizes a novel
combination of cache decay and index randomization to mitigate
state-of-art cache attacks. MIRAGE [59] is a practical design for a
fully associative cache. It is immune to set-conflicts since eviction
candidates are selected randomly from among all the lines resident
in the cache.

8 DISCUSSION
Other High-Precision Time Resources. Combined with the sum-
mary in ARMageddon [45] and other works [22, 58, 61, 79], the
high-resolution time resources of ARMv8-A are divided into four
categories, namely unprivileged syscall, assembly instruction direct
access, POSIX function and dedicated thread timer. The second and
third categories are protected by FlushTime. The first and fourth time
resources can bypass the protection mechanism of FlushTime. The
first category, unprivileged system call, refers to the perf_event_open
system call. The time register accessed by this system call is PMCC-
NTR_EL0. Currently, on most ARMv8-A platforms, invoking this
system call does not require any privileges. In future work, we can
trap access to PMCCNTR_EL0 into EL1 kernel space. Then, we can
design the coordination mechanism of user_cache_maint_handler()
and the handler associated with this system call. This design can
achieve the purpose of protecting the system call. The fourth cat-
egory, dedicated thread timer, is that an attacker can run a thread
that increments a global variable in a loop, providing a fair approxi-
mation of a cycle counter. This attack method requires the attacker
running timing thread on another CPU core in parallel. A possible
defense approach is to have the flush instruction to cooperate with
the kernel process scheduler. When the flush instruction occurs, the

12

kernel process scheduler automatically assigns the suspected mali-
cious process’s two threads (attack and timing thread) to the same
CPU core. This prevents the timing thread from obtaining the high
resolution timing information.
Cache-Related Attacks without Flush. Prime+Probe, Evict+Reload,
SpectrePrime and MeltdownPrime attacks do not require flush in-
structions, so the defense mechanism of FlushTime is ineffective
against them. Although these attacks require physical address map-
pings, this restriction does not reduce the threat of these attacks.
Because getting physical address mappings in a Linux system is pos-
sible [56, 74]. Therefore, in our future work, we expect to continue
to enhance the defense capability of FlushTime to make it effective
against Prime+Probe, Evict+Reload, SpectrePrime, and Meltdown-
Prime. We believe that combining the design of HomeAlone [84]
and CloudRadar [83] with FlushTime is a feasible solution. Specifi-
cally, we expect to add mechanisms to FlushTime that can monitor
cache activity. Once the abnormal behavior of the cache is found, the
system immediately reduces the resolution of the generic timer. This
extended design of FlushTime could defend against Prime+Probe,
Evict+Reload, SpectrePrime and MeltdownPrime attacks.
Deployment in virtualized environment. There are two types of
virtualized environments, one is virtual machines represented by
VMware [71], VirtualBox [13], Hyper-V [50] Xen [17] and KVM
[12] and the other is virtual containers represented by Docker [15].
If FlushTime is expected to run normally in the above two virtual
environments, it is necessary to correctly set SCTLR_EL1 and CN-
TKCTL_EL1 registers at the hardware level. On this basis, the next
FlushTime configuration can be performed. For the first type of
virtual machine, the OS kernel running inside the virtual machine
is replaceable. Therefore, we only need to replace the old kernel
with a new kernel with FlushTime configuration; then FlushTime
can run normally in the virtual machine. If we do not have per-
mission to replace the kernel, we can also use kernel hot patch
technologies such as kpatch [28] and Ksplice [52] to modify ker-
nel functions user_cache_maint_handler(), context_switch(), and
cntvct_read_handler() online. This allows for a successful deploy-
ment of FlushTime in a virtual machine. For the second type of vir-
tual container similar to Docker, since the kernel cannot be replaced,
kernel functions user_cache_maint_handler(), context_switch(), and
cntvct_read_handler() can only be modified online with kernel hot
patch technologies such as kpatch and Ksplice. This method allows
FlushTime to run normally in the Docker container.
Impact of Continuous Malicious Flush. In the setting of Flush-
Time, a large number of continuous flush instructions will reduce
the time resolution of the operating system for a long time, thereby
affecting the OS normal function. To investigate the magnitude of
this impact in depth, we traversed the source code of the operating
system to find all functions that required high-resolution timing.
Table 4 shows several representative functions and their file paths. It
can be seen from Table 4 that most of the functions that require high-
resolution time are used for testing and are not the core functions of
the operating system. Therefore, when the time resolution obtained
by these functions is not accurate enough, it will not affect the core
functions of the operating system. On the other hand, in future work,
in order to prevent the impact of continuous resolution reduction on
these functions, we can try to design a runtime monitoring module.

The module can monitor these high-resolution test functions in real
time, and restore the FlushTime resolution immediately once these
functions are found to be called. This real-time monitoring mecha-
nism can effectively prevent FlushTime from affecting the normal
functions of the operating system.

Table 4: Functions that require high-resolution time resources.

File Path Function Name
tools\testing\selftests\timers\
adjtick.c get_monotonic_and_raw()
tools\perf\builtin-stat.c process_interval()
tools\power\cpupower\utils\
idle_monitor\cpupower-monitor.c cpuidle_start()
tools\testing\selftests\mqueue\
nanosleep.c nanosleep_test()
tools\testing\selftests\mqueue\
mq_perf_tests.c perf_test_thread()
tools\testing\selftests\timers\
leap-a-day.c test_hrtimer_failure()
tools\testing\selftests\bpf\
test_sockmap.c msg_loop()

Special Timestamp. As mentioned in Section 6.2, our selected value
of NumLRMB is 12. That is, when the generic timer is in the low
resolution state, the 12 low-order bits of its timestamp are all 0s. This
way of reducing the resolution by setting zero is effective in general.
However, some special timestamps invalidate this method of zeroing.
For example, when the time interval is [b’nnn1_0000_0000_0nnn,
b’nnn0_1111_1111_1nnn], the time interval of low resolution state
becomes [b’nnn1_0000_0000_0000, b’nnn0_0000_0000_0000]. As
we can see from this example, there is a leak of information in this
time interval. To summarize, this happens around the carry of the
13th bit. Although the probability of such a time interval is not high,
it still has a certain impact on the success rate of the attack. The
fluctuation of the attack success rate after the optimal value in Figure
3 and Figure 4 also confirms the existence of such time information
leakage. In our future research work, we expect to deal with the time
leakage of these special timestamps without too much impact on the
performance of FlushTime.

9 CONCLUSION
Flush-based cache-related attacks have become a serious security
threat to ARMv8-A-based systems. Existing defense solutions have
limited defense coverage, high performance overhead, or cannot
be deployed on existing devices. This paper presents FlushTime,
a software runtime defense scheme that can be deployed at scale.
FlushTime can defend against all types of flush-based cache-related
attacks through a novel cooperative mechanism of flush instructions
and generic timer. We implemented various types of cache-related
attacks on ARMv8-A servers and verified that FlushTime is more
secure than other defense schemes. The performance evaluation
results show that the overhead of FlushTime is the lowest among
compared defense solutions.

13

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insightful
comments. This work is partly supported by the National Natural Sci-
ence Foundation of China under Grant No. 62002151 and Shenzhen
Science and Technology Program under Grant No. SGDX2020110-
3095408029.

REFERENCES
[1] 2016. https://github.com/openssl/openssl/blob/OpenSSL_1_1_0/crypto/aes/aes_

core.c. (2016).
[2] Onur Aciiçmez, Werner Schindler, and Çetin Kaya Koç. Cache Based Remote

Timing Attack on the AES. In Topics in Cryptology - CT-RSA 2007, The Cryptog-
raphers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February
5-9, 2007, Proceedings, Masayuki Abe (Ed.).

[3] Sam Ainsworth. 2021. GhostMinion: A Strictness-Ordered Cache System for
Spectre Mitigation. In MICRO ’21: 54th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, Virtual Event, Greece, October 18-22, 2021. ACM,
592–606.

[4] Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: Preventing Cross-
Domain Spectre-Like Attacks by Capturing Speculative State. In 47th ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2020, Valencia,
Spain, May 30 - June 3, 2020. IEEE, 132–144.

[5] ARM. 2021. Arm Architecture Reference Manual Armv8, for A-profile architec-
ture. https://developer.arm.com/documentation/ddi0487/gb. (2021).

[6] ARM. 2021. Vulnerability of Speculative Processors to Cache Timing
Side-Channel Mechanism. https://developer.arm.com/support/security-updates/
speculative-processor-vulnerability. (2021).

[7] Daniel J. Bernstein. 2005. Cache-Timing Attacks on AES. https://cr.yp.to/
antiforgery/cachetiming-20050414.pdf. (2005).

[8] Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke. 2010.
Differential Cache-Collision Timing Attacks on AES with Applications to Em-
bedded CPUs. In CT-RSA 2010. 235–251.

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution. In 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, William Enck and Adrienne Porter Felt
(Eds.).

[10] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. 2016. Real time detection
of cache-based side-channel attacks using hardware performance counters. Appl.
Soft Comput. 49 (2016), 1162–1174.

[11] Chromium. 2015. window.performance.now does not support sub-millisecond
precision on Windows. https://bugs.chromium.org/p/chromium/issues/detail?id=
158234#c110. (2015).

[12] The Linux Kernel community. 2023. Kernel-based Virtual Machine. https:
//en.wikipedia.org/wiki/Kernel-based_Virtual_Machine. (2023).

[13] Oracle Corporation. 2023. VirtualBox. https://en.wikipedia.org/wiki/VirtualBox.
(2023).

[14] Will Deacon. 2018. arm64: Add skeleton to harden the branch predictor against
aliasing attacks. https://patchwork.kernel.org/project/linux-arm-kernel/patch/
4349161f0ed572bbc6bff64bad94aa96d07b27ff.1562908075.git.viresh.kumar@
linaro.org/. (2018).

[15] Inc. Docker. 2023. Docker (software). https://en.wikipedia.org/wiki/Docker_
(software). (2023).

[16] Hongyu Fang, Milos Doroslovacki, and Guru Venkataramani. Reuse-trap: Re-
purposing Cache Reuse Distance to Defend against Side Channel Leakage. In
57th ACM/IEEE Design Automation Conference, DAC 2020, San Francisco, CA,
USA, July 20-24, 2020.

[17] Linux Foundation. 2023. Xen. https://en.wikipedia.org/wiki/Xen. (2023).
[18] Raspberry Pi Foundation. 2023. Raspberry Pi 4: Your tiny, dual-display, desk-

top computer. https://www.raspberrypi.com/products/raspberry-pi-4-model-b/.
(2023).

[19] Jacob Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An Efficient
Data-centric Defense Mechanism against Spectre Attacks. In Proceedings of the
56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV,
USA, June 02-06, 2019.

[20] Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, and Zeyi Liu. More Secure Col-
laborative APIs Resistant to Flush+Reload and Flush+Flush Attacks on ARMv8-A.
In 26th Asia-Pacific Software Engineering Conference, APSEC 2019, Putrajaya,
Malaysia, December 2-5, 2019.

[21] Jingquan Ge, Neng Gao, Chenyang Tu, Ji Xiang, Zeyi Liu, and Jun Yuan. Combi-
nation of Hardware and Software: An Efficient AES Implementation Resistant to
Side-Channel Attacks on All Programmable SoC. In Computer Security - 23rd Eu-
ropean Symposium on Research in Computer Security, ESORICS 2018, Barcelona,
Spain, September 3-7, 2018, Proceedings, Part I, Javier López, Jianying Zhou,

and Miguel Soriano (Eds.).
[22] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.

ASLR on the Line: Practical Cache Attacks on the MMU. In 24th Annual Network
and Distributed System Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017.

[23] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and Stefan Mangard. KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems - 9th International Symposium, ESSoS 2017, Bonn,
Germany, July 3-5, 2017, Proceedings, Eric Bodden, Mathias Payer, and Elias
Athanasopoulos (Eds.).

[24] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.).

[25] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA 2016. 279–299.

[26] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In USENIX Security
15. 897–912.

[27] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache Games -
Bringing Access-Based Cache Attacks on AES to Practice. In S&P 2011. 490–
505.

[28] Red Hat. 2022. kpatch. https://en.wikipedia.org/wiki/Kpatch. (2022).
[29] HiSilicon. 2020. Kunpeng 920-4826 - HiSilicon. https://en.wikichip.org/wiki/

hisilicon/kunpeng/920-4826. (2020).
[30] Jann Horn. 2018. speculative execution, variant 4: speculative store bypass.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528. (2018).
[31] Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen, and Binyu Zang. EPTI: Efficient

Defence against Meltdown Attack for Unpatched VMs. In 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018,
Haryadi S. Gunawi and Benjamin Reed (Eds.).

[32] Huawei. 2021. Select the Best Servers for Your Business. https://e.huawei.com/
en/products/servers/taishan-server. (2021).

[33] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing Side Channel
Attacks against Kernel Space ASLR. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013.

[34] Intel. 2021. Intel 64 and IA-32 Architectures Software Developer’s
Manual. https://www.intel.com/content/dam/develop/public/us/en/documents/
325462-sdm-vol-1-2abcd-3abcd.pdf. (2021).

[35] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. MASCAT: Preventing
Microarchitectural Attacks Before Distribution. In Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy, CODASPY
2018, Tempe, AZ, USA, March 19-21, 2018, Ziming Zhao, Gail-Joon Ahn, Ram
Krishnan, and Gabriel Ghinita (Eds.).

[36] John Kelsey, Bruce Schneier, David A. Wagner, and Chris Hall. 1998. Side
Channel Cryptanalysis of Product Ciphers. In ESORICS 98. 97–110.

[37] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. SafeSpec: Banishing
the Spectre of a Meltdown with Leakage-Free Speculation. In Proceedings of
the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV,
USA, June 02-06, 2019.

[38] Konstantin Khlebnikov. 2015. pagemap: update documentation. https://www.
kernel.org/doc/Documentation/vm/pagemap.txt. (2015).

[39] Vladimir Kiriansky and Carl A. Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. CoRR abs/1807.03757 (2018). arXiv:1807.03757 http:
//arxiv.org/abs/1807.03757

[40] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In (S&P’19).

[41] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96. 104–
113.

[42] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael B. Abu-Ghazaleh. Spectre Returns! Speculation Attacks using the Return
Stack Buffer. In 12th USENIX Workshop on Offensive Technologies, WOOT 2018,
Baltimore, MD, USA, August 13-14, 2018, Christian Rossow and Yves Younan
(Eds.).

[43] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N. Kha-
sawneh, Chengyu Song, and Nael B. Abu-Ghazaleh. SpecCFI: Mitigating Spectre
Attacks using CFI Informed Speculation. In 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020.

[44] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. Conditional
Speculation: An Effective Approach to Safeguard Out-of-Order Execution Against
Spectre Attacks. In 25th IEEE International Symposium on High Performance
Computer Architecture, HPCA 2019, Washington, DC, USA, February 16-20,
2019.

14

https://github.com/openssl/openssl/blob/OpenSSL_1_1_0/crypto/aes/aes_core.c
https://github.com/openssl/openssl/blob/OpenSSL_1_1_0/crypto/aes/aes_core.c
https://developer.arm.com/support/security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/security-updates/speculative-processor-vulnerability
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine
https://en.wikipedia.org/wiki/VirtualBox
https://patchwork.kernel.org/project/linux-arm-kernel/patch/4349161f0ed572bbc6bff64bad94aa96d07b27ff.1562908075.git.viresh.kumar@linaro.org/
https://patchwork.kernel.org/project/linux-arm-kernel/patch/4349161f0ed572bbc6bff64bad94aa96d07b27ff.1562908075.git.viresh.kumar@linaro.org/
https://patchwork.kernel.org/project/linux-arm-kernel/patch/4349161f0ed572bbc6bff64bad94aa96d07b27ff.1562908075.git.viresh.kumar@linaro.org/
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Xen
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://en.wikipedia.org/wiki/Kpatch
https://en.wikichip.org/wiki/hisilicon/kunpeng/920-4826
https://en.wikichip.org/wiki/hisilicon/kunpeng/920-4826
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://e.huawei.com/en/products/servers/taishan-server
https://e.huawei.com/en/products/servers/taishan-server
https://www.intel.com/content/dam/develop/public/us/en/documents/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
http://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757
http://arxiv.org/abs/1807.03757

[45] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security 16. 549–564.

[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security 18.

[47] H.J. Lu. 2018. [PATCH 0/5] x86: CVE-2017-5715, aka Spectre. https://gcc.gnu.
org/ml/gcc-patches/2018-01/msg00422.html. (2018).

[48] Kelly Lucas. 2018. byte-unixbench. https://github.com/kdlucas/byte-unixbench.
(2018).

[49] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative Execution Using
Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang (Eds.).

[50] Microsoft. 2023. Hyper-V. https://en.wikipedia.org/wiki/Hyper-V. (2023).
[51] Michael Neve, Jean-Pierre Seifert, and Zhenghong Wang. A refined look at Bern-

stein’s AES side-channel analysis. In Proceedings of the 2006 ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2006, Taipei,
Taiwan, March 21-24, 2006, Ferng-Ching Lin, Der-Tsai Lee, Bao-Shuh Paul Lin,
Shiuhpyng Shieh, and Sushil Jajodia (Eds.).

[52] Oracle. 2022. Ksplice. https://en.wikipedia.org/wiki/Ksplice. (2022).
[53] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D.

Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 1406–1418.

[54] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In CT-RSA 2006. 1–20.

[55] Dan Page. 2002. Theoretical Use of Cache Memory as a Cryptanalytic Side-
Channel. IACR Cryptol. ePrint Arch. (2002), 169. http://eprint.iacr.org/2002/169

[56] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In
25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, Thorsten Holz and Stefan Savage (Eds.).

[57] Suzuki K Poulose. 2016. arm64: Refactor sysinstr exception han-
dling. https://patchwork.kernel.org/project/linux-arm-kernel/patch/1472203398-
8751-9-git-send-email-suzuki.poulose@arm.com/. (2016).

[58] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. SoK: In Search
of Lost Time: A Review of JavaScript Timers in Browsers. In IEEE European
Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria, September
6-10, 2021.

[59] Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: Mitigating Conflict-
Based Cache Attacks with a Practical Fully-Associative Design. In 30th USENIX
Security Symposium, USENIX Security 2021, August 11-13, 2021, Michael Bailey
and Rachel Greenstadt (Eds.).

[60] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,
and Daniel Gruss. ConTExT: A Generic Approach for Mitigating Spectre. In 27th
Annual Network and Distributed System Security Symposium, NDSS 2020, San
Diego, California, USA, February 23-26, 2020.

[61] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In
Detection of Intrusions and Malware, and Vulnerability Assessment - 14th Inter-
national Conference, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings,
Michalis Polychronakis and Michael Meier (Eds.).

[62] SPEC. 2017. SPEC CPU 2017. https://www.spec.org/cpu2017/. (2017).
[63] Raphael Spreitzer and Thomas Plos. 2013. On the Applicability of Time-Driven

Cache Attacks on Mobile Devices. In Network and System Security - 7th Interna-
tional Conference, NSS 2013. 656–662.

[64] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels. CoRR abs/1806.07480 (2018).
arXiv:1806.07480 http://arxiv.org/abs/1806.07480

[65] Yevgeniy Sverdlik. 2021. Nvidia Is Designing an Arm Data Center CPU
for Beyond-x86 AI Models. https://www.datacenterknowledge.com/machine-
learning/nvidia-designing-arm-data-center-cpu-beyond-x86-ai-models. (2021).

[66] Jan Philipp Thoma, Christian Niesler, Dominic A. Funke, Gregor Leander, Pierre
Mayr, Nils Pohl, Lucas Davi, and Tim Güneysu. 2021. ClepsydraCache - Pre-
venting Cache Attacks with Time-Based Evictions. CoRR abs/2104.11469 (2021).
arXiv:2104.11469 https://arxiv.org/abs/2104.11469

[67] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. 2018. MeltdownPrime
and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols. CoRR abs/1802.03802 (2018). arXiv:1802.03802
http://arxiv.org/abs/1802.03802

[68] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on
AES, and Countermeasures. J. Cryptol. 23, 1 (2010), 37–71.

[69] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES Implemented on Computers with Cache. In
Cryptographic Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings, Colin D.
Walter, Çetin Kaya Koç, and Christof Paar (Eds.).

[70] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886. (2018).

[71] VMware. 2023. VMware Workstation. https://en.wikipedia.org/wiki/VMware_
Workstation. (2023).

[72] W3C. 2016. High Resolution Time Level 2. https://www.w3.org/TR/hr-time/.
(2016).

[73] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and Abhik
Roychoudhury. 2021. oo7: Low-Overhead Defense Against Spectre Attacks via
Program Analysis. IEEE Trans. Software Eng. 47, 11 (2021), 2504–2519.

[74] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal. DRAMDig:
A Knowledge-assisted Tool to Uncover DRAM Address Mapping. In 57th
ACM/IEEE Design Automation Conference, DAC 2020, San Francisco, CA, USA,
July 20-24, 2020.

[75] Michael Weiß, Benedikt Heinz, and Frederic Stumpf. 2012. A Cache Timing
Attack on AES in Virtualization Environments. In FC 2012. 314–328.

[76] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with tran-
sient out-of-order execution. (2018). $$Uhttps://lirias.kuleuven.be/retrieve/
515917$$Dforeshadow-ng.pdf[freelyavailable]

[77] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. ScatterCache: Thwarting Cache Attacks via Cache
Set Randomization. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and Patrick Traynor
(Eds.).

[78] Wylie Wong. 2020. Ampere’s Arm Data Center Chips Come to Oracle
Cloud. https://www.datacenterknowledge.com/hardware/ampere-s-arm-data-
center-chips-come-oracle-cloud. (2020).

[79] Haocheng Xiao and Sam Ainsworth. Hacky Racers: Exploiting Instruction-Level
Parallelism to Generate Stealthy Fine-Grained Timers. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC,
Canada, March 25-29, 2023, Tor M. Aamodt, Natalie D. Enright Jerger, and
Michael M. Swift (Eds.).

[80] Xilinx. 2019. ZCU102 Evaluation Board User Guide.
https://www.xilinx.com/support/documentation/boards_and_kits/zcu102/
ug1182-zcu102-eval-bd.pdf. (2019).

[81] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX
Security Symposium. 719–732.

[82] Boris Zbarsky. 2015. Clamp the resolution of performance.now() calls to 5us,
because otherwise we allow various timing attacks that depend on high accu-
racy timers. https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab.
(2015).

[83] Tianwei Zhang, Yinqian Zhang, and Ruby B. Lee. CloudRadar: A Real-Time
Side-Channel Attack Detection System in Clouds. In Research in Attacks, Intru-
sions, and Defenses - 19th International Symposium, RAID 2016, Paris, France,
September 19-21, 2016, Proceedings, Fabian Monrose, Marc Dacier, Gregory
Blanc, and Joaquín García-Alfaro (Eds.).

[84] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. HomeAlone:
Co-residency Detection in the Cloud via Side-Channel Analysis. In 32nd IEEE
Symposium on Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley,
California, USA.

[85] Peter Zijlstra. 2019. smp: Warn on function calls from softirq context. https:
//github.com/torvalds/linux/blob/v5.4/kernel/smp.c. (2019).

[86] Marc Zyngier. 2017. arm64: Add CNTVCT_EL0 trap handler. https://patches.
linaro.org/project/lkml/patch/1492374441-23336-2-git-send-email-daniel.
lezcano@linaro.org/. (2017).

[87] Marc Zyngier. 2020. arm64: Run ARCH_WORKAROUND_2 enabling code on
all CPUs. http://lkml.iu.edu/hypermail/linux/kernel/2010.3/11148.html. (2020).

15

https://gcc.gnu.org/ml/gcc-patches/2018-01/msg00422.html
https://gcc.gnu.org/ml/gcc-patches/2018-01/msg00422.html
https://github.com/kdlucas/byte-unixbench
https://en.wikipedia.org/wiki/Hyper-V
https://en.wikipedia.org/wiki/Ksplice
http://eprint.iacr.org/2002/169
https://www.spec.org/cpu2017/
http://arxiv.org/abs/1806.07480
http://arxiv.org/abs/1806.07480
http://arxiv.org/abs/2104.11469
https://arxiv.org/abs/2104.11469
http://arxiv.org/abs/1802.03802
http://arxiv.org/abs/1802.03802
https://support.google.com/faqs/answer/7625886
https://en.wikipedia.org/wiki/VMware_Workstation
https://en.wikipedia.org/wiki/VMware_Workstation
https://www.w3.org/TR/hr-time/
$$Uhttps://lirias.kuleuven.be/retrieve/515917$$Dforeshadow-ng.pdf[freelyavailable]
$$Uhttps://lirias.kuleuven.be/retrieve/515917$$Dforeshadow-ng.pdf[freelyavailable]
https://hg.mozilla.org/integration/mozilla-inbound/rev/48ae8b5e62ab
https://github.com/torvalds/linux/blob/v5.4/kernel/smp.c
https://github.com/torvalds/linux/blob/v5.4/kernel/smp.c
https://patches.linaro.org/project/lkml/patch/1492374441-23336-2-git-send-email-daniel.lezcano@linaro.org/
https://patches.linaro.org/project/lkml/patch/1492374441-23336-2-git-send-email-daniel.lezcano@linaro.org/
https://patches.linaro.org/project/lkml/patch/1492374441-23336-2-git-send-email-daniel.lezcano@linaro.org/
http://lkml.iu.edu/hypermail/linux/kernel/2010.3/11148.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Cache Flush Instructions
	2.2 High Resolution Timers and API
	2.3 Cache-Related Attacks
	2.4 Defenses and Limitations

	3 Threat Model
	4 Design of FlushTime
	4.1 Overview of FlushTime
	4.2 Relationship between Flush Instructions and Generic Timer
	4.3 NumLRMB and NumCSLR

	5 Implementation
	6 Evaluation
	6.1 Environment Setup
	6.2 Selection of NumLRMB and NumCSLR
	6.3 Security Analysis
	6.4 Performance Analysis

	7 Related Work
	8 Discussion
	9 Conclusion
	Acknowledgments
	References

