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a b s t r a c t

Existing permissioned blockchain systems designate a fixed and explicit group of
committee nodes to run a consensus protocol that confirms the same sequence of blocks
among all nodes. Unfortunately, when such a permissioned blockchain runs on a large
scale on the Internet, these explicit committee nodes can be easily turned down by
denial-of-service (DoS) or network partition attacks. Although recent studies proposed
scalable BFT protocols that run on a larger number of committee nodes, these protocols’
efficiency drops dramatically when only a small number of nodes are attacked.

In this paper, we propose a novel protocol named Eges that leverages hardware
trusted execution environments (e.g., Intel SGX) to develop a new abstraction called
‘‘stealth committee’’, which effectively hides a committee into a large pool of fake
committee nodes. Eges selects a different stealth committee for each block and confirms
the same blocks among all nodes with overwhelming probability. Our evaluation shows
that Eges is the first efficient permissioned blockchain’s consensus protocol, which
simultaneously satisfies two important metrics: (1) Eges can tolerate tough DoS and
network partition attacks; and (2) Eges achieves comparable throughput and latency
as existing fastest permissioned blockchains’ consensus protocols. Eges’s source code is
available on http://github.com/hku-systems/eges.

© 2021 Published by Elsevier B.V.

1. Introduction

A blockchain is a distributed ledger recording transactions maintained by nodes running on a peer-to-peer (P2P)
etwork. These nodes run a consensus protocol to ensure consistency: nodes confirm (i.e., agree on committing [1–3])
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he same sequence of blocks (i.e., no forks). Each block contains the hash of its previous block, forming an immutable
ash chain. A blockchain can be permissioned or permissionless. A typical permissionless blockchain does not manage
embership for nodes and is usually equipped with a cryptocurrency mechanism (e.g., Bitcoin [4]) to incentivize nodes

o follow the blockchain’s protocol [5,6].
In contrast, a permissioned blockchain runs on a set of authenticated member nodes and can leverage the mature

yzantine Fault-Tolerant (BFT) protocols [7–9] to achieve better efficiency (i.e., throughput and latency). This paper focuses
n permissioned blockchains because their decoupling from cryptocurrencies has facilitated the deployment of many
eneral data-sharing applications, including a UK medical chain [10], IBM supply chains [11], and the Libra payment
ystem [3].
For performance and regulation reasons (e.g., meeting the honesty threshold of BFT protocols [12]), a permissioned

lockchain (e.g., Hyperledger Fabric [2]) typically runs its consensus protocol on a static and explicit committee. This
tatic committee approach is already robust for a permissioned blockchain among a small scale of enterprises [11].
Unfortunately, as permissioned blockchains are deployed on large scales on the Internet, this static committee approach

s vulnerable [1,13–15] to Denial-of-Service and network partition attacks targeting committee nodes. We discuss these
wo types of attacks together because any single node cannot distinguish them (Section 2), and we call them targeted
oS attacks altogether. Libra [3] also identifies DoS attacks as a significant threat but provides only partial mitigation
Section 2.2). Indeed, great progress has been made in designing scalable BFT protocols (e.g., SBFT [8]) running on a larger
roup of committee nodes and tolerating more nodes being attacked. However, these protocols designate a small number
f committee nodes to finish critical tasks (e.g., combing ACKs), making these protocols’ efficiency drop dramatically if
hese nodes are under DoS attacks (Section 2.2). With recent DoS attacks lasting for days [16,17], tolerating such attacks
s crucial, yet challenging, for applications deployed on permissioned blockchains.

To address such vulnerabilities of static committees, a promising direction is to adopt the dynamic committee merit
rom permissionless blockchain systems [1,18]. These systems select a different committee for each block (mainly for
airness) and confirm a consistent sequence of blocks with a tailored consensus protocol [1,19]. As the committee member
s rotated, the dynamic committee merit brings the potential to achieve liveness even if a committee is under targeted
oS attacks.
Simply applying the dynamic committee approach, however, is not enough for a permissioned blockchain to be

esistant to targeted DoS attacks. To achieve DoS-resistance, it is crucial that the committee selection is unpredictable: the
dentities of nodes in a committee must be unpredictable to the attacker before the committee tries to achieve consensus
n a block. Otherwise, the attacker can adaptively attack the ready-to-be committee and cause the system stuck. For
nstance, ByzCoin [20] lets the proof-of-work winners of recent blocks be the committee, but these explicit nodes are
asily targeted by a DoS attacker, causing ByzCoin to lose liveness permanently [21].
To the best of our knowledge, Algorand is the only work that can tolerate targeted DoS attacks. Algorand adopts

he dynamic committee approach and lets each node independently determine its committee membership based on the
onfirmed part of the blockchain. However, as Algorand is designed for permissionless blockchains, it confirms a block
ith up to 15 rounds and minute-level latency (discussed in Section 2.2), making it unsuitable for general data-sharing
pplications on permissioned blockchains (e.g., Libra [3]).
This paper aims to explore the new design point of building a permissioned blockchain’s consensus protocol that adopts

he unpredictable dynamic committee merit to defend against targeted DoS or targeted partition attacks, and at the same
ime, achieves comparable efficiency as existing BFT protocols (e.g., SBFT [8] has second-level latency). To achieve this
oal, a main obstacle is to ensure that any selected committee meets the honesty requirement for byzantine problems:
or consistency, each committee must have at most one-third of nodes being malicious [12]. Permissionless blockchains
eet this requirement by selecting committees based on nodes’ wealth in the cryptocurrency (i.e., proof-of-stake), but
ryptocurrencies are usually unavailable in permissioned blockchains. Consequently, to meet such a requirement, one has
o unrealistically assume that almost all member nodes (>90%) are honest (see Section 2).

Fortunately, the recent pervasive usage of hardware Trusted Execution Environments (TEEs) such as Intel SGX [22] in
blockchain systems (e.g., Microsoft CCF [23], REM [24], Ekiden [25], Intel PoET [26]) shows that the code integrity feature
of TEEs can surmount this obstacle. For instance, a recent implementation [27] of MinBFT leverages TEEs to ensure that a
node cannot send different messages to different nodes and is incorporated into Hyperledger [2]. However, these systems
still run their consensus protocols on a group of fixed and explicit committee nodes, making them susceptible to targeted
DoS attacks.

We present Eges,1 the first efficient consensus protocol that can tackle targeted DoS or targeted partition attacks for a
permissioned blockchain. Eges adopts the dynamic committee merit to select a different committee for confirming each
block. To defend against DoS or partition attacks targeting the committees, we leverage the integrity and confidentiality
features of TEEs to present a new abstraction called stealth committee.

Eges’s stealth committee has two new features. First, Eges selects a stealth committee in TEE: the selection progress has
no communication among committee nodes, and the selection result cannot be predicted from outside TEE. This ensures
that a committee node stays stealth (cannot be targeted by the attacker) before sending out its protocol messages. Second,

1 Eges stands for Efficient, GEneral, and Scalable consensus.
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able 1
omparison of Eges to baseline protocols. DoS resistance is analyzed in Section 2; evaluation setup is in Section 7. Eges is the only protocol that is
oth DoS-resistant and is among the fastest consensus protocols for permissioned blockchains.
Protocol DoS and partition resistance With TEEs? Number of nodes Tput (txn/s) Confirm latency (s)

Eges High Yes 300 3226 0.91
10 K 2654 1.13

Algorand High No 10 K ∼727 ∼22
PoET Mediuma Yes 100 149 45.2
Ethereum Mediuma No 100 178 82.3
SBFT Low No 62 1523 1.13
MinBFT Low Yes 64 2478 0.80
BFT-SMaRt Low No 10 4512 0.67
Tendermint Low No 64 2462 1.31
HotStuff Low No 64 2686 2.63
HoneyBadger Low No 32 1078 9.39

aPoET and Ethereum cannot ensure consistency on network partition attacks [13].

when nodes in a committee are trying to confirm a block, Eges hides them into a large pool of fake committee nodes that
behave identically as the real ones observed from outside TEE, so that an attacker cannot identify the real committees.

However, even equipped with TEEs and stealth committee, it is still challenging to efficiently ensure both consistency
(i.e., no two member nodes confirm conflicting blocks) and reasonable liveness (i.e., allow non-empty blocks to get
confirmed) in the asynchronous Internet due to the FLP impossibility [28]. Specifically, suppose a committee node x for
he nth block fails to receive the (n− 1)th block after a timeout, x cannot distinguish whether it is because the committee
or the (n−1)th block failed to confirm the (n−1)th block, or because x itself does not receive the confirmed (n−1)th block
due to network problems. As the committee nodes for the (n−1)th block may be under DoS attacks and be unreachable, x
ust have a mechanism to distinguish these two scenarios in order to maintain both consistency and reasonable liveness

n Eges.
Eges tackles this challenge by leveraging simple probability theory. Eges’s committee for each block contains one

roposer and nA (e.g., 300) acceptors, randomly and uniformly selected from all nodes. The proposer broadcasts its block
roposal to all nodes by P2P broadcasts and seeks quorum ACKs from the acceptors. Eges models the randomly selected
cceptors as a sampling of the delivery rate of the proposal in the P2P overlay network [1]. In the previous example,
ges confirms the proposal for the (n− 1)th block only if the proposal is delivered to a large portion of member nodes; if
ultiple rounds (D = 4 by default) of the sampling show that very few nodes have received that proposal for the (n−1)th
lock, nodes in Eges consistently confirm the (n − 1)th block as an empty block (with an overwhelming probability).
In sum, Eges efficiently enforces consistency and can defend against targeted DoS or partition attacks. Specifically,

ges defends against such attacks by (1) letting committee nodes stay stealth before they start achieving consensus for a
lock, (2) using fake committee nodes to conceal real committee nodes while they are achieving consensus for a block,
nd (3) switching to a different committee and consistently confirming a block even if the attacker luckily guesses most
eal committee nodes for this block.

In essence, Eges’s stealth committee is a moving target defense approach [29,30] that unpredictably replaces the
ommittee to make a DoS attacker cannot launch effective targeted attacks. Eges is efficient because confirming a block
n a gracious run (e.g., the proposer can reach most acceptors) only involves two P2P broadcasts and a UDP one-way
elay (Section 4). We provide a rigorous analysis of Eges’s DoS-resistance and proof of Eges’s consistency guarantee in
ection 5.
We implemented Eges using the codebase from Ethereum [31] and compared Eges with nine consensus protocols for

lockchain systems, including five state-of-the-art efficient BFT protocols for permissioned blockchains (BFT-SMaRt [7],
BFT [8], HoneyBadger [32], and HotStuff [9]), two TEE-powered consensus protocols for permissioned blockchains (Intel-
oET [26] and MinBFT [33]), the default consensus protocol in our codebase (Ethereum-PoW [31]), and two permissionless
lockchains’ protocols that run on dynamic committees (Algorand [1] and Tendermint [18]). We ran Eges on both our
luster and AWS. The extensive evaluation results (Table 1) show that:

• Eges is robust. Among all consensus protocols for permissioned blockchains, Eges is the only protocol that can
defend against targeted DoS and network partition attacks, by both a theoretical analysis (Section 5) and evaluation
(Section 7.2).

• Eges is efficient. Eges confirms a block with 3000 transactions in less than two seconds in typical geo-distributed
settings, comparable to evaluated consensus protocols that cannot tolerate targeted DoS attacks.

• Eges’s throughput and latency are scalable to the number of nodes. When running 10k nodes, Eges showed 2.3X
higher throughput and 16.8X lower latency than Algorand with 10k nodes.

Compared to existing BFT protocols [7–9,32] and TEE-powered consensus protocols [26,33] for permissioned

lockchains, Eges is the only protocol that can tolerate targeted DoS attacks, and Eges’s efficiency is comparable to the

3
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astest of these protocols. Compared to Algorand, the only known DoS-resistant consensus protocol for permissionless
lockchains, Eges has much higher throughput and lower latency.
Our contribution is three-fold. First, Eges leverages TEEs to explore the new design point of tackling DoS attacks

while enforcing both consistency and reasonable liveness (including efficiency) for a permissioned blockchain in the
asynchronous Internet. Second, we designed the new stealth committee abstraction and implemented Eges’s consensus
protocol. Our third contribution includes an implementation of the Eges prototype and the extensive experiments of
Eges and existing blockchain consensus protocols on diverse adversarial network conditions, including targeted DoS
attacks, ubiquitous DoS attacks, and network partitions. Our paper reveals that, in addition to safety and performance,
DoS resistance is also an essential evaluation metric for practical Internet-scale blockchain applications (e.g., e-voting [34]
and payment [3]). For instance, SGX-ToR [35], a blockchain client anonymity service, is shown [36] to be susceptible to
DoS attacks targeting its directory service; deploying SGX-ToR on Eges can make SGX-ToR DoS-resistant (Section 7.5).

In the rest of the paper, Section 2 introduces Eges’s background and motivation; Section 3 gives an overview of Eges;
Section 4 introduces Eges’s consensus protocol; Section 5 analyzes the safety and liveness of Eges; Section 6 covers our
implementation; Section 7 shows our evaluation, and Section 8 concludes.

2. Background and related work

We discuss targeted DoS and network partition attacks together because these two attacks cannot be effectively
distinguished in an asynchronous network. When a node cannot reach a remote node, the node cannot determine whether
it is because the remote node is under DoS attacks or because the network is partitioned. Therefore, Eges maintains
consistency by handling both cases together.

Although there exist many influential systems [37,38] addressing DDoS attacks on specific nodes, Eges is complemen-
tary to them because Eges handles diverse attack scenarios (e.g., an attacker controls nodes’ P2P modules to cause network
partition [13,15], see Section 3.2) from the consensus layer.

We assume that the attacker has an attack budget B (e.g., B = 300): the attacker can mount DoS attacks targeting B
nodes at a time. We will formally define the threat model in Section 3.2.

2.1. Trusted execution environments and Intel SGX

Eges explores the design space that leverages the data confidentiality feature of hardware Trusted Execution Environ-
ments (TEEs) to make the committee members’ identities stealth, and Eges leverages the code integrity feature of TEEs to
ensure the faithful execution of Eges’s protocol. TEEs provide both confidentiality and integrity to designated memory
regions via hardware protection; the memory regions (containing code and data) are isolated from unauthenticated
accesses, even from higher privileged system software. TEEs are widely available on most modern commercial platforms,
including Intel SGX [22], ARM TrustZone [39], AMD SEV [40], and RISC-V Multizone [41].

In this paper, we present Eges’s protocol with Intel SGX because SGX is one of the most widely accepted and
studied [22] TEE implementations, but Eges’s protocol is general for any TEE product with code integrity and data
confidentiality guarantees. Intel SGX is a hardware feature on commodity Intel CPUs. SGX allows applications to crate
TEEs called enclaves, where data and code execution cannot be seen or tampered with from outside. Code outside enclaves
can enter an enclave by ECalls, and SGX uses remote attestations [22] to prove that a particular piece of code is running
in an enclave on a genuine SGX-enabled CPU. SGX provides a trustworthy random source (sgx_read_rand), which calls
the hardware pseudo-random generator through the RDRAND CPU instruction seeded by on-chip entropy sources [22].
Previous studies show that this random source complies with security and cryptographic standards and cannot be seen
or tampered with from outside enclaves [42,43].

Recent work leverages SGX to improve diverse aspects of blockchain systems. Intel’s PoET [26] replaces the PoW
puzzles with a trusted timer in SGX; Eges is more efficient than PoET (Section 7.1). REM [24] uses SGX to replace the
useless PoW puzzles with useful computation (e.g., big data), orthogonal to Eges. Microsoft CCF [23] is a permissioned
blockchain platform using SGX to achieve transaction privacy, but it does not include a DoS-resistance approach. Scifer [44]
uses SGX to maintain reliable node identities on the blockchain, which is adopted in Eges (Section 6.1).

Ekiden [25] and ShadowEth [45] offload the execution of smart contracts to SGX-powered nodes to avoid redundant
execution and to preserve privacy; TEEChain [46] uses SGX to build an efficient and secure off-chain payment channel;
Town Crier [47] uses SGX to build a trustworthy data source for smart contracts; Tesseract [48] uses SGX to build a
cross-chain coin exchange framework; Obscuro [49] uses SGX to improve bitcoin’s privacy; these systems do not focus
on consensus protocols and are orthogonal to Eges.

2.2. Consensus for permissioned blockchains

We briefly introduce recent notable consensus protocols for permissioned blockchains, which are also Eges’s evaluation
aselines. Overall, all these protocols run on a static committee. To ensure liveness under a DoS attacker with an attack
udget of B, these protocols must scale to 3 × B + 1 nodes (for BFT protocols) or 2 × B + 1 nodes (for SGX-powered

protocols). However, to our best knowledge, no existing protocol can achieve such scalability.
4
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BFT-SMaRt [7] is an optimized implementation of PBFT [50]. As each node broadcasts consensus messages to all other
nodes, BFT-SMaRt has O(n2) message complexity to the number of committee nodes, resulting in poor scalability. Its
paper [7] only evaluated up to 10 nodes. SBFT [8] is a scalable BFT protocol that uses a new type of committee nodes
called collectors. A node sends its consensus messages to only c (usually c < 8) explicit collectors who will then broadcast
combined message using the threshold signature. SBFT’s fast path can commit a block if fewer than c nodes fail; however,
BFT’s performance drops dramatically if an attacker targets the c collectors (Section 7.4).
HotStuff [9] is a BFT protocol optimized for frequent leader changes, and Libra [3] leverages Hotstuff to tolerate targeted

oS attacks on leaders. However, since Hotstuff reports a near-linear increment of latency with an increasing number of
odes, it only evaluated up to 128 nodes, where an attacker can DoS attack or partition one-third of all nodes rather than
inding the leader. HoneyBadger [32] uses randomization to remove the partial synchrony assumption of PBFT. However,
oth its paper and our evaluation show that HoneyBadger achieves high latency due to many rounds of broadcasts in its
synchronous byzantine agreements.
MinBFT [33] is an SGX-powered BFT protocol with the same fault model as Eges. MinBFT reduces the number of rounds

n PBFT and can tolerate more faulty node failures, but MinBFT still has O(n2) message complexities, so its performance
s not scalable to the number of nodes.

.3. Consensus for permissionless blockchains

Existing permissionless blockchains can be divided into two categories based on how they confirm blocks. The first
ategory confirms block with variants of the longest-chain rule (i.e., Nakamoto consensus [4]), including BitCoin [4],
thereum [31], BitCoin-NG [51], Snow-White [52], Ouroboros [53], Paros [54], Genesis [55], and GHOST [56]. Specifically,
ach node asynchronously selects the longest chain it received and confirms a block when there are k blocks succeeding
t. However, waiting for k more blocks leads to a long confirm latency, and previous work [57] shows that this k must
e large enough to ensure consistency. Moreover, the longest-chain rule cannot ensure consistency under partition
ttacks [1,14,58]. Intuitively, during a network partition, each partition will independently grow a chain; if these chains
iverge for more than k blocks, nodes in different partitions will confirm conflicting blocks.
The second category of permissionless blockchains confirms blocks using the committee-based BFT approach, which

an confirm a block as soon as the BFT consensus is achieved. This category includes Algorand [1], ByzCoin [20],
endermint [18], and PeerCensus [59]. These systems select distinct (dynamic) committees for different blocks based
n the content (e.g., nodes’ wealth) on the blockchain for fairness and for handling nodes joining or leaving. Similar
o Eges, these systems run a tailored consensus protocol (BA* in Algorand [1], Tendermint [18], Tenderbake [60], and
enderand [19]) on dynamic committees to confirm blocks.
However, these protocols cannot be ported to a permissioned blockchain because of the tight coupling with cryp-

ocurrency. For instance, although Tendermint [61] and Tenderbake [60] are described as stand-alone BFT protocols,
hey assume that in any committee, fewer than one-third of nodes are malicious. In a permissioned blockchain without
ryptocurrency, if we want to ensure that any randomly selected committee (say 100 nodes) from a large number of
say 10k) nodes meets this requirement with overwhelming probability (> 1–10−10), we need to assume over 91% of all
nodes being honest (by the hypergeometric distribution), which is an overly-strong assumption for a practical large-scale
blockchain system (e.g., a global payment system [3]) on the Internet.

Moreover, these systems (except Algorand) cannot ensure liveness under targeted DoS attacks because they select
committees in a predictable way so that all nodes can verify the identities of committees. For instance, ByzCoin [20] lets
the proof-of-work winners of recent blocks be the committee. However, these nodes with explicit identities are easily
targeted by a DoS attacker, and ByzCoin may lose liveness permanently [21] if more than one-third of these nodes are
attacked. Algorand defends against targeted DoS attacks by letting each node use verifiable random functions to determine
its committee membership. We provide a detailed comparison showing why Eges is more efficient than Algorand in
Section 4.3.

3. Overview

3.1. Architecture

Eges is a consensus protocol for a permissioned blockchain running on M member nodes (nodes for short) connected
with an asynchronous network. Eges adopts the hybrid fault model used in existing SGX-powered consensus proto-
cols [33,62,63], where each node has a trusted module (i.e., the SGX enclave) that will only fail by crashing, and all other
components can behave arbitrarily.

Fig. 1 shows the architecture of an Eges node. Each node is equipped with an attested SGX enclave running only Eges’s
onsensus protocol. The blockchain application layer, the transaction generation and query libraries (e.g., web3.js [64]),
nd the blockchain storage module are outside the enclave because they are already cryptographically protected. The P2P
etwork and operating system are outside the enclave and untrusted.
For each block index n, Eges determines one committee among all nodes (uniqueness proved in Section 5.1), and a
ode’s committee selection module (Section 4.2) knows whether the node is a committee member only within its enclave.

5
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Fig. 1. An Eges node’s architecture. Eges’s consensus protocol has four components running in the enclave. Block proposals are included in consensus
essages.

ach committee has one proposer (denoted as Pn), a group of acceptors (denoted as An) with the count of nA, and a group
f arbiters with the count of nα . A committee node’s enclave activates corresponding committee logic modules for this nth
lock according to its committee roles if the node is a committee member, and the committee logic modules will generate
r respond to consensus messages following Eges’s consensus protocol (Section 4.3).
The proposer Pn takes a batch of transactions from outside the enclave, generates a unique block proposal (denoted

s proposaln) within its enclave, and tries to finalize it by collecting quorum ACKs from the acceptors (Section 4.3). Eges
nsures that Pn’s identity is unknown to any node’s modules outside the node’s enclave (even if the node is controlled by
n attacker) before Pn broadcasts its proposaln, while all acceptors An’s identities are unknown to the outside throughout

the whole consensus process (Section 4.3). To handle DoS attacks targeting Pn, Eges uses the arbiters to help Pn finalize
roposaln if Pn is under attack, but the arbiters do not generate new block proposals (Section 4.4).
SGX is essential for Eges due to three main reasons. First, Eges uses SGX to regulate the behaviors of randomly selected

committee nodes (Section 4.3); otherwise, the blockchain may fork if committee nodes equivocate (i.e., sending conflicting
messages to different nodes). In Eges, each node has a private key that is only visible within the node’s SGX enclave, and
he corresponding public key works as the node account saved in all other nodes’ SGX enclaves (Section 4.1). A valid
onsensus message must carry a valid signature, proving that the message is generated in the sender node’s enclave with
ode integrity. By doing so, a node cannot equivocate or forge protocol messages (e.g., a proposer sending out a finalize
essage without receiving quorum ACKs).
Second, Eges leverages SGX to make its committee’s identities stealth: only a node’s enclave knows whether it is a

ommittee member for the current block (Section 4.2). This not only enables Eges to maintain practical liveness under DoS
ttacks, but more importantly, makes Eges’s consistency model resistant to targeted attacks. Specifically, Eges leverages
robability theory to model randomly selected acceptors as a uniform sampling of the delivery rate of a block proposal
n the P2P network (same as Algorand [1], see Section 4.3). If acceptors’ identities are public, an attacker can selectively
ransfer or drop packets towards them, breaking Eges’s safety.

Third, the usage of SGX enables Eges to select a stealth committee with a known count. As illustrated later in
ection 4.3, this helps Eges to be more efficient than Algorand.
Eges has the following design goals:

• Safety (consistency). Eges ensures safety in an asynchronous network. Formally, if a node confirms a block b as the
nth block on the blockchain, the probability that another node confirms b′

̸= b as the nth block is overwhelmingly
low (< 10−10).

• DoS-resistance (liveness). In addition to safety, Eges can make progress (i.e., allow non-empty blocks to be
confirmed) with the assumptions about DoS attackers’ capability as described below.

Let us reconsider the subtle challenge we mentioned in Section 1 with a concrete example in Fig. 2. This challenge is
nique in Eges because Eges uses different committees for different blocks to resist DoS attacks targeting the committee.
hen a node cannot receive a block after a timeout, for liveness, the node cannot wait forever, but for safety, the
ode must figure out whether this block may have been confirmed by some nodes. Existing consensus protocols on
tatic committees use a view change protocol that queries how many nodes have sent out ACKs and leverages quorum
ntersections [50,65,66] to address this problem. However, in Eges, this method is not viable because Eges must ensure
iveness even if most nodes in A are DoS attacked after sending out their ACKs.
n
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Fig. 2. A key challenge of Eges is to determine whether a block (the nth block in this example) has ever been confirmed when a node cannot
receive the block after a timeout. ‘P’ means the proposer; ‘A’ means an acceptor; arbiters are omitted in this figure for brevity.

Fig. 2 shows two subtle cases illustrating the challenge. Note that these two cases are deliberately simple for a clear
exposition of Eges’s idea, and Eges can ensure safety in all scenarios in the asynchronous network (Section 5.1). In case
(1), the proposer for the nth block (Pn) failed before broadcasting its proposaln. Therefore, proposaln is not confirmed on
any node, and all nodes can safely confirm an empty block at the nth position. In case (2), nodes are divided into two
partitions right after the n − 1th block is confirmed. Pn and most nodes of An are in partition 1, so nodes in partition 1
can confirm the porposaln successfully. In this case, although nodes in partition 2 cannot receive porposaln, they should
not confirm an empty block. From any single node point of view, these two cases cannot be effectively distinguished.

To address this challenge, Eges introduces a new consensus protocol based on probability theory (Section 4.3).
Specifically, if proposaln is confirmed on some nodes, proposaln should have been delivered to a large enough portion
of nodes in the P2P network because (1) confirming proposaln needs quorum ACKs from nodes in An, and (2) An is
uniformly selected from all nodes. Therefore, if we repetitively sample many nodes from all nodes, and no node has
received proposaln, we can predicate that only a small portion of (or no) nodes have received proposaln, and thus the
probability of proposaln having been confirmed is overwhelmingly low. To be DoS-resistant, these multiple rounds of
checking must be initiated by different nodes, so Eges lets the proposers for subsequent blocks (i.e., Pn+1, Pn+2, etc.) do
such samplings while seeking ACKs for their own proposals (Section 4.3).

3.2. Threat model

SGX’s threat model. Eges has the same threat model for SGX as typical SGX-based systems [27,67–70]. We trust the
hardware and firmware of Intel SGX, which ensures that code and data in an enclave cannot be seen or tampered with from
outside. We trust that the remote attestation service can identify genuine SGX devices from fake ones (e.g., emulated with
QEMU). Side-channel and access pattern attacks on SGX are out of the scope of this paper. Moreover, the adversary cannot
break standard cryptographic primitives, including public-key based signatures and collision-resistant hash functions.
Transaction model. Same as most existing blockchain systems [1,24,26,71], Eges assumes that (1) each transaction has a
verifiable client signature, and (2) the execution and validation of any transaction are deterministic and can be performed
by any node independently.
Communication model. Eges maintains safety in an asynchronous network, where network packets can be dropped,
delayed, or reordered arbitrarily. Nodes may be nonresponsive, due to going offline or targeted DoS attacks (e.g., botnet
DDoS attacks [16]) by a DoS attacker. When a node cannot reach a remote node, the node cannot determine whether
the remote node is under DoS attack (or is offline) or the network packets are delayed. Nodes are equipped with loosely
synchronous clocks (e.g., by running NTP), but Eges does not rely on the correctness of these clocks for safety.

To achieve liveness, same as existing protocols [7,9,50,72–74]. Eges has the partial synchrony [75] assumption: there
is an unknown global stabilization time (GST), after which messages between two nodes not under DoS attacks can be
delivered within a known time-bound.

Nodes are connected with a P2P overlay network, same as existing large-scale blockchain systems [1,4]. Each node has
a P2P module connecting to a random set of other nodes and relays messages using the gossip protocol [76–79].

A node’s P2P module is outside SGX and can be controlled by the attackers [15]: the attacker can partition some nodes
from other nodes [13,14]) or selectively pass consensus messages to nodes’ SGX enclaves. However, such manipulations
are already included in Eges’s asynchronous network assumption. For safety, Eges leverages the sampling merit to estimate
the delivery rate of a specific block proposal and derives overwhelming probability, regardless of how nodes are connected.
For liveness, Eges can tolerate the adversary controlling the P2P modules of a number of nodes with the restriction of the
adversary’s attack budget described below.
Assumptions on the capability of DoS attackers. Eges has three assumptions on the capability of a DoS attacker, same
as Algorand [1] and existing move target defense (MTD) systems [29,30]. First, the adversary has a targeted attack budget
7
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: the adversary cannot constantly cause more than B targeted nodes in Eges to be nonresponsive. B can be a constant
umber (e.g., 300) or a fraction (e.g., 10%) of the total number of nodes, but B should be bounded by the ubiquitous attack
hreshold in the second assumption below. Note that this budget B is adaptive: the adversary can attack different nodes at
ifferent times, but the number of attacked nodes at a time cannot be constantly larger than B. By ‘‘constantly’’, we mean
hat the adversary can sometimes cause more than B targeted nodes to be non-responsive (e.g., because most randomly
selected committee nodes are luckily controlled by the adversary) and cause an Eges block cannot be confirmed. However,
ges can still achieve liveness by letting subsequent committees consistently confirm this block (Section 4.3).
Second, the attacker can conduct ubiquitous DoS attacks (without targeting specific nodes) or partition a number of

odes from other nodes (e.g., by manipulating nodes’ P2P modules [13,14]). However, the P2P overlay network should
ave a large enough portion (e.g., 65%) of nodes connected. We provide a quantitative analysis of how Eges can preserve
iveness under such attacks in Section 5.3.

Third, the adversary cannot constantly succeed in mounting an attack targeting a node within the time window for the
ode to send out an Eges protocol message. Specifically, Eges protocol messages are larger than the network maximum

packet size and are fragmented into multiple packets; an Eges committee node’s identity is unknown to the adversary
efore sending out the first packet, and we assume that the adversary cannot mount targeted DoS attacks until the node
ends out all packets belonging to this message (at most hundreds of kB and can be sent within one second).
Eges already assumes a strong attacker for practical distributed systems on the Internet. Although modern botnet

ttacks may call up thousands of devices to conduct an attack [80–82], the attacker has to use tens or hundreds of
evices to successfully make a single targeted node unresponsive [80,83,84]. Moreover, existing single-node DoS defense
echniques [81,82,85], although cannot completely defend DoS attacks targeting this node, can further elevate the number
f botnet devices required to make this node unresponsive. Therefore, setting the budget to a few hundred (e.g., 300 in
ges’s evaluation) is sufficient for defending most botnet DoS attacks targeting Eges committees.
As pointed out by Algorand [1], a more powerful adversary than our model usually controls the internet service

provider and can prevent all Eges nodes from communicating at all: no practical system can ensure liveness under such
a strong adversary, and such attacks can be easily detected. We will provide a rigorous analysis of Eges’s DoS resistance
in Section 5.2.
DoS resistance of Eges. Eges has three important features to achieve DoS resistance:

• Eges randomly selects a distinct committee for each block. The selection is done inside the SGX enclaves of a previous
committee, and the selection result is encrypted on the confirmed common prefix of the blockchain. By doing so,
a committee node can determine its committee membership without interactions with other nodes, making it stay
stealth before trying to achieve consensus on its block.

• When a committee is achieving consensus for a given block, Eges uses fake committee nodes to conceal the real
ones by sending encrypted dummy messages. Since whether a node is a real committee node is only known within
the node’s SGX enclave, and the encrypted dummy messages are of the same format as real ones, a DoS attacker
cannot distinguish the real committee nodes from the fake ones. Therefore, the attacker must have an unrealistic
large attack budget to attack all the real and fake committees; otherwise, he has to randomly guess who are the real
ones.

• Even if the attacker luckily guesses the real ones (he may eventually succeed if trying persistently), Eges can ensure
safety with overwhelming probability. Specifically, even if a committee cannot confirm its own block, committees
for subsequent blocks can help to consistently confirm this block (Section 4.3). This feature is in contrast to most
existing consensus protocols (i.e., all except Algorand [1]), where the system must wait statically until a quorum of
nodes becomes reachable.

4. Eges consensus protocol

4.1. Protocol preliminaries

Protocol parameters. Eges’s consensus protocol has three parameters, nA (default 300), τ (default 59%), and D (default
), where nA is the number of acceptors, τ is the quorum ratio, and D is the finalization depth for an empty block. We will
how how to select these parameters in Section 5.3 and how these parameters affect Eges’s performance in Section 7.3.
lock structure. Eges adds one data field to the block structure of common blockchain systems [4,31]: the encrypted
ommittee identities for a future block (Section 4.2). Eges is oblivious to how transactions are stored or executed (see
Fig. 3).

Invariant 1 (See Section 5.1 for Proof). For any block index n, at most one unique block proposal (proposaln) is generated; a
ode can only confirm proposaln or a default empty block (emptyn) as its nth block.

Block status. Each block in a node’s chain has three states: undecided, finalized, and confirmed. An undecided nth block can
only be emptyn. A node appends emptyn to its chain when the node triggers a timeout waiting for the finalize message
for the nth block; the block is in the undecided state because the node cannot determine (for now) whether it should
confirm proposal or empty .
n n
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Fig. 3. Eges’s block status diagram.

A finalized nth block can be either proposaln or emptyn. Eges ensures the following invariant:

nvariant 2. If a node’s nth block is finalized as proposaln, no other nodes will finalize the nth block as emptyn, and vice versa.

There are two rules for appending a finalized nth block: (1) a node appends finalized proposaln if it receives the finalize
message for proposaln, and (2) a node changes the emptyn from the undecided state to finalized if the node can predicate
that no node has finalized proposaln (Section 4.3).

A node confirms its finalized nth block if all blocks with indices smaller than n in its chain are finalized. Note that
although Eges may finalize blocks out of order, Eges confirms blocks sequentially, same as typical blockchains [2,31].

Each node’s local states. Each Eges node maintains three major local states: a local blockchain (the chain), a proposal
cache (the cache), and a set of learntProposals, The cache is maintained in the node’s Eges enclave. When the node
eceives proposaln, it puts the proposal into the cache, in case the committees of future blocks query the delivery rate of
roposaln.
The chain on each node is divided into two parts: the confirmed part and the unconfirmed part. We use MC to represent

the maximum confirmed index and U to represent the indices of undecided blocks in chain. The confirmed part of chain
(i.e., indices≤MC) is cryptographically-chained by hash values and can be saved out of the enclave and get executed, while
unconfirmed parts are saved in the Eges enclave. The learntProposals is the set of known proposals for undecided blocks
on this node and is saved in Eges enclave.

Membership and key management. Each node i has a key pair ⟨pki, ski⟩, with the public key pki as its account, and its
secret key ski is only visible within its enclave: even this node’s administrator cannot see the plain-text of its secret key.
We use the notations from PBFT [50]: we denote a message m1 sent to node i encrypted by i’s public key pki as {m1}pki ;
we denote a message m2 generated by node i’s enclave and signed by ski as ⟨m2⟩σi . For efficiency, Eges signs on message
digests.

To ease understanding, we describe Eges protocol on a fixed membership, where all nodes’ accounts (public keys) are
loaded to nodes’ Eges enclaves a priori, and all nodes’ Eges enclaves are attested. We show how Eges supports dynamic
membership and attestations in Section 6.1.

4.2. Selecting a stealth committee

For each block, Eges selects a committee, including one proposer, nA acceptors, and nα arbiters, in an unpredictable
way without communication among nodes.

The committee members for the nth block is selected in the Eges enclave of Pn−lb, and these committee nodes’ identities
are encrypted in the (n−lb)th block. lb (look-back) is a system parameter and needs to be large enough (e.g., the number of
blocks confirmed in days) to ensure that even when the network condition is poor, and new blocks cannot be confirmed in
time, Eges can still derive committees for future blocks. We assume that the first lb committees’ identities are encrypted
in the genesis (0th) block by a trusted party, or that the blockchain is bootstrapped in a controlled domain for at least lb
blocks. Note that the value of lb does not affect Eges’s safety.

Occasionally, a node may be selected as the committee for a future block and then leave the system, which Eges
already tolerates as a failed node. If the (n− lb)th block happens to be an empty block, Eges uses the committee identities
encrypted in the (n− 2lb)th block (and identities in the (n− 3lb)th block if the (n− 2lb)th block is also empty, recursively).
Although this proposer’s identity is already explicit when confirming the (n − lb)th block and may be targeted, Eges can
tolerate it as a failed proposer and uses subsequent committees to confirm emptyn.

P(n−lb) selects the committee for the nth block with two steps, which are done in P(n−lb)’s Eges enclave to ensure both
integrity (i.e., an attacker cannot control the selection) and confidentiality (i.e., an attacker cannot know the selection
result). In the first step, P(n−lb) randomly selects the committee members from all member nodes following the uniform
distribution. Recall that the member list is loaded in the Eges enclave on each node (Section 4.1), so P(n−lb) simply selects
nA + 1 nodes from the list using the SGX’s trustworthy pseudo-random number generator as the random source, which
has been shown to be cryptographically-secure and cannot be seen or tampered with from outside enclave (Section 2.1).

In the second step, for each selected committee node, P(n−lb) generates one certificate, which is the cipher-text of the
concatenation of a predefined byte string and a random nonce (for making the cipher-text unpredictable), encrypted with
that committee node’s public key. Then, P(n−lb) includes these (nA + nα + 1) certificates in the (n − lb)th block’s proposal.
The first certificate is for the proposer, and the other n certificates are for acceptors. When a node confirms this block, it
A
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Fig. 4. Eges’s consensus protocol.

ries to decrypt one of these certificates using its own secret key in its enclave; if the node can get the predefined string,
t predicates that it is a committee node for the nth block.

Despite using asymmetric cryptography, this mechanism is efficient in Eges because both encryption and decryption
re done asynchronously off the consensus’ critical path. For encryption, since P(n−lb)’s enclave knows it is the proposer
or the (n − lb)th block after confirming the (n − 2lb)th block, P(n−lb) starts selecting the committees and encrypting the
certificates as soon as confirming the (n−2lb)th block. Similarly, the decryption is also off the critical path as the decryption
result is used lb blocks later.

In addition, Eges also selects a group of fake acceptors for each block index n. Since Eges does not need to control the
exact identities or number of the fake acceptors, Eges lets each node independently determine whether it is a fake acceptor
within its enclave (Algorithm 2 Line 4), and Eges only control the expected number of fake acceptors by controlling the
probability for each node to become a fake acceptor. We use the nF to represent the number of fake acceptors, and nF is
a binomial random variable.

Eges’s committee selection mechanism is unpredictable and non-interactive because: (1) the random source cannot
be seen or tampered with from outside the enclave of Pn−lb, and the certificates can only be verified within a selected
committee node’s enclave; and (2) the selection process is solely done within the Eges enclave of Pn−lb. These two features
ensure the committee nodes’ identities are not exposed during the selection, so the committee nodes cannot be targeted
before sending out protocol messages for the nth block.

Discussions. Eges selects only one proposer for each block to achieve good efficiency: Eges only needs to achieve a
binary consensus on whether to confirm the unique proposal by this proposer or a default empty block. For acceptors,
an alternative design is to let each node independently determine whether it is an acceptor for the current block with a
probability, and Eges only controls the expected total count. However, this alternative design will lead to a much larger
quorum ratio (i.e., τ ) to ensure safety and thus worse liveness (quantitative analysis in Section 7.3) (see Fig. 4).
10
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Fig. 5. An example where p102 helps finalizing proposal100 while proposing its (102th) block.

Fig. 6. An example for confirming an empty block (200th) after D = 4 succeeding blocks containing 200 in U.

.3. Confirming a block

As shown in Fig. 4, a proposer Pn has two operation modes: normal mode and checking mode. Pn is in the normal mode
if all blocks in its chain before n are confirmed (i.e., U = ∅), and Pn tries to confirm proposaln quickly. Otherwise, Pn is in
he checking mode: while proposing proposaln, it also checks the status of the undecided blocks in its chain.

ormal mode. Algorithm 1 Line 3∼7 shows how a normal mode Pn tries to confirm proposaln in a gracious run. First,
n broadcasts a propose request through the P2P network carrying proposaln and its MC (Section 4.1). The MC value helps
odes align confirmed parts of their chain: if a node’s MC is smaller than the proposer’s, the node asks for the missing
onfirmed blocks from its peers (Algorithm 2 Line 3). Upon receiving this propose request, an acceptor replies an ACK using
DP directly to Pn (Algorithm 3 Line 5). Second, Pn waits for quorum (τ ×nA) ACKs from An. Pn does not know which nodes
re acceptors, but Eges’s ensures that a non-acceptor cannot send valid ACKs (Section 4.1). Third, Pn broadcasts a finalize

message; on receiving this message, a node finalizes proposaln.

Checking mode. Pn is in the checking mode if it has undecided blocks (i.e., U is non-empty), and its workflow is shown
in Algorithm 1 Line 8∼19. Pn checks the status of its undecided blocks and tries to finalize them (if possible) by adding
additional fields to the propose message.

Each u ∈ U in Pn’s chain is categorized into one of the two types: (1) if Pn has learnt the unique proposalu, either
from the propose messages or from Pu from the notifications of other nodes, we call u a ‘‘known undecided’’ block; (2)
otherwise we call u ‘‘unknown undecided’’. For each unknown undecided block u, Pn tries to learn proposalu from An. If
Pn learns the proposal, Pn carries it in the finalize message in order to let subsequent proposers finalize it. Otherwise, Pn
carries a message stating that most acceptors in An never received proposaln, and a node receiving this message finalize
emptyn if the node received such messages from more than D consecutive proposers (Algorithm 2 Line 18).

For known undecided blocks, Pn helps to finalize only proposalum where um = max(U) and leaves other blocks for
subsequent proposers. In other words, undecided blocks must be finalized in descending order. This is because, without
this restriction, when a node finalizes emptyn, it only ensures proposers for blocks with index ≤ n + D has not finalized
proposaln; adding this restriction helps to ensure that proposers for blocks with index > n+D cannot finalize proposaln.

To help understanding, we give three concrete examples showing (1) how a proposer helps to finalize an undecided
proposal, (2) how a proposer finalizes an undecided block as empty, and (3) why a checking mode proposer can only
finalize proposalum where um = max(U).

Fig. 5 gives an example illustrating how a proposer P102 helps to finalize an undecided proposal100. Suppose P100 failed
just before broadcasting its finalize message. Therefore, the 100th block’s state is undecided among all nodes. Then, P101
learns proposal100 and carries it in its finalize message, and P102 learns it. Then P102 finalizes proposal100 together with
proposal102. Moreover, since all blocks before 102 are finalized, the chain is confirmed up to 102.

Fig. 6 gives an example showing how an undecided block is finalized as empty. Suppose P200 failed before broadcasting
its proposal, and D = 4. When P ∼P asks whether their acceptors (A ∼A ) receive proposal , they get no
201 204 201 204 200
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Fig. 7. An example showing why a checking mode proposer can finalize only proposali where i = max(U). D = 4 in this example.

ositive answers. Therefore, these four blocks are all finalized, carrying a message stating that four samplings have
een conducted on the delivery rate of proposal200, but no replied node has received proposal200. This indicates that the
robability that proposal200 is finalized at some nodes is overwhelmingly low. Therefore, a node can independently finalize
mpty200, after which the chain is confirmed to 204.
Fig. 7 shows why it is essential that a checking mode proposer can only finalize proposalum where um = max(U).

uppose we remove this restriction, and we consider the following scenario. (1) P200 fails after broadcasting proposal200,
nd only very few nodes received it: none of P201∼P204 learns proposal200. (2) The network is divided into two partitions
&B just before P204 broadcasting its finalize message; P204 is in partition A, so nodes in partition A confirm proposal204
nd confirm empty200 (3) P205 and P206 are in partition B, so they timeout waiting for the finalize message for proposal204
nd mark the 204th block as undecided. (4) P205 learns proposal200 from one node from A205 (who happens to be in the
ery few nodes) and carries proposal200 with its finalize message, which is learnt by P206. (5) P206 finalizes proposal200
nd causes inconsistency: nodes in partition A confirm empty200, while nodes in partition B confirm proposal200.
By restricting that a checking mode proposer can only finalize proposalum where um = max(U), such inconsistency will

ot happen. This is because nodes in partition B must first finalize the empty204 before finalizing proposal200. However,
ince proposal204 has already been delivered to a large portion of nodes, this inconsistency cannot happen.
iscussions. Eges does not let the acceptors validate transactions enclosed in proposaln because Eges may finalize blocks
ut of order. Specifically, if proposaln contains a money transfer transaction, and an acceptor has undecided blocks
receding n, the acceptor cannot predicate whether the source account has enough balance without a complete history.
herefore, Eges validates transactions when they are confirmed at each node because Eges always confirms blocks in
rder. An invalid transaction is deterministically (Section 3.2) discarded by all nodes, without impairing Eges’s safety.
For the same reason, Eges does not force Pn to generate its proposaln within its SGX enclave because Pn cannot forge

validly signed transaction to affect Eges’s safety. Overall, Eges achieve consensus on proposaln opaquely.
The drawback is that Eges may waste resources on achieving consensus on invalid transactions. However, as all invalid

ransactions are recorded on the blockchain, if an entity keeps injecting invalid transactions, it can be easily detected and
enalized in a permissioned deployment.

omparison with Algorand. Eges and Algorand both select a distinct committee for each block in an unpredictable way,
nd both use the delivery rate of a block proposal to confirm a block. Algorand leverages its built-in cryptocurrency to
ncentivize committee nodes to follow its protocol (i.e., proof of stake). However, even if one runs Algorand within SGX
n a permissioned blockchain, there are still two major design differences making Eges more efficient than Algorand.

First, Algorand uses verifiable random functions (VRF) to determine committees, so it can only control the expected
ount of proposers for each block without an exact number (1∼70 in their experiment [1]). This design makes Algorand’s
onsensus protocol not responsive [3,9]: informally, a responsive protocol lets nodes wait for a number of messages
ather than a large amount of time in each protocol step, which ensures a good performance when the network is in
ood condition. For each block, Algorand selects 1∼70 proposers, and each proposer broadcasts a block proposal with a
istinct priority level. Then, Algorand selects one of these proposals by letting nodes vote for the received proposal with
he highest priority. Since the total number of proposers is unknown, each node must wait for a conservatively long time
e.g., 10s) before voting to ensure it has received most proposals. In contrast, Eges selects one proposer for each block,
ithout the necessity for the selection progress, and Eges’s protocol is responsive (Section 4).
Second, Eges adopts an optimistic design while Algorand adopts a pessimistic design. Specifically, Algorand uses a

eavy step for both confirming a non-empty block and confirming an empty block. In contrast, Eges optimistically makes
ts gracious runs (i.e., confirming proposaln) fast and shifts the burden of maintaining consistency to the rare failure cases
i.e., confirming empty ).
n
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.4. Handling DoS attacks targeting proposers

In Eges, a proposer stays stealth before proposing its block, but its identity becomes explicit after broadcasting its
roposal. If the proposer is DoS attacked at this time, this block cannot be finalized in time, impairing Eges’s liveness.
To address this problem, we propose a new role of nodes called arbiter. An arbiter for a block index n does not generate

ew block proposals but only helps the proposer to finalize its proposal. For each block index n, the count of arbiters nα

s large than the attack budget B, and these arbiters do the same tasks to tolerate DoS attacks targeting them.
On receiving proposaln, an arbiter for the nth block broadcasts an arbit request following the same protocol as the

roposer (Algorithm 1), and an acceptor responds to an arbit message with the same logic responding to a propose
essage.

iscussions. With the arbiters’ help, a proposer’s critical task is only to send out its propose request, and the arbiters
elp to finalize it. However, responding to both proposer and multiple arbiters makes acceptors targets of DoS attacks.
herefore, Eges lets normal nodes also randomly send fake (dummy) ACKs to cover the real acceptors (Algorithm 2 Line
). Since real or fake ACKs are all encrypted with the receiver’s public key, only the receiver’s Eges enclave can decrypt
hem in the enclave and distinguish the real ones, so an attacker cannot know who are the real acceptors.

. Security analysis

.1. Safety with overwhelming probability

Eges ensures safety with overwhelming probability (i.e., > 1 − 10−10).

Theorem 1 (Safety). If an Eges node confirms a block b as the ith block on the blockchain, the probability that another Eges
node confirms b′

̸= b as the ith block is < 10−10.

We prove the safety guarantee of Eges by induction: suppose Eges guarantees safety from the 0th block to the n − 1th

block (hypothesis 1), and we prove that there is only one unique block that can be confirmed as the nth block among
nodes in the blockchain. The base case is trivial because all nodes start from the same 0th block.

Lemma 1. if two nodes have the same maximum confirmed block in their chain (i.e., MC = n − 1 due to hypothesis 1), then
during consensus for the (n + i)th block where i ≥ 0, as long as MC is not changed, these two nodes see the same member list.

Proof. Proving this lemma is trivial if Eges works on a fixed member list, and we will show in Section 6.1 that Eges’s
protocol for dynamic memberships also ensures this lemma.

Lemma 2. (Invariant 1 in Section 4.1): at most one proposal can be generated for the nth block.

Proof. This lemma is proved by two steps. First, as the proposer for the nth block is encrypted in the (n− lb)th block, and
he (n − lb)th block is the same among nodes because of hypothesis 1. Therefore, there is only one proposer (may have
ailed) for the nth block. Second, this proposer generates at most one proposal, and non-proposer nodes cannot generate
alid proposals for the nth block because Eges’s consensus module runs in SGX.

roof of the induction step. In Eges, each block has only two choices (Lemma 2), and a confirmed block must be first
inalized (Section 4.1). Therefore, it is sufficient to prove the following proposition 1: the probability that one node finalizes
mptyn (event A), and another node finalizes proposaln (event B) is overwhelmingly small.
For event A, suppose node X finalizes emptyn. We use fmx to denote the maximum finalized block index on node X .

onsider blocks with indices in [n+1, fmx ]. Since Eges finalizes empty blocks in descending order (Algorithm 2 Line 12∼15),
here are no undecided blocks in [n + 1, fmx ], and we can have another level of induction by supposing blocks finalized
s empty in (n + 1, fmx ] are finalized consistently (name it hypothesis 2). For event B, proposaln can be finalized either
y Pn (call it event B1) or by subsequent proposers that have learnt this proposal (event B2).
First, we prove that the probability that event A and event B1 happen together is overwhelmingly low. Suppose that a

ortion p of all M Eges nodes received and cached the proposaln, and we calculate the probability for event B1. We use Re
o denote the number of acceptors for the nth block that REceived proposaln. Since proposaln is broadcasted in Eges’s P2P
etwork and the stealth acceptors are selected uniformly, Re follows hypergeometric distribution Re ∼ H(M, nA, p×M).
hus, the probability that Pn finalizes proposaln is

Prob(B1) = Prob(Re > τ × nA)

We then calculate the probability of event A. Event A infers that after the nth block, there are at least D non-empty blocks
hat are finalized and carrying n in the undecided list. This means each proposer of these D blocks received (τ ×nA) ACKs
rom their acceptor group, and none of these acceptors sending those ACKs has received proposaln. For each of the D
locks, the number of acceptors NR not receiving proposal follows hypergeometric distribution NR ∼ H(M, n , (1−p)×M).
n A
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Therefore, the probability of event A is

Prob(A) = (Prob(NR > τ × nA))D

The calculation shows that the probability of event A and event B1 happening together Prob(A)× Prob(B1) is overwhelm-
ingly low for any delivery rate p by setting τ and nA (Section 7.3). For instance, our evaluation chose τ as 59%, D as 4, nA
as 300, M as 10K, and the probability of Eges enforcing safety is 1 − 10−9. In real deployments, M may change due to
membership changes; however, when M is much bigger (e.g., 20X) than nA, this probability is not sensitive to M because
hypergeometric distribution is approximate to binomial.

For the second step, we prove that event A and event B2 cannot happen together. For event B2, we suppose that
proposer Pi, where i > n, learns and finalizes proposaln. We discuss by comparing i and fmx and derive contradictions.
If i ≤ fmx , hypothesis 2 infers that X did not finalize emptyi, so proposaln is finalized together with proposali at node
X, contradicting to event A. Else if i > fmx , since a proposer can only finalize the maximum index in its local U list
(Algorithm 1 Line 9), for node Pi we can predicate that blocks with index in [n + 1, i) are finalized. Due to hypothesis 2,
blocks within [n + 1, fmx ] are finalized the same as node X, and therefore Pi should also finalize the nth block as empty,
causing contradiction.

Putting the two steps together, we proved proposition 1 and thus proved the induction step that the nth block
must be confirmed consistently among nodes with overwhelmingly high probability. Therefore, Eges ensures safety with
overwhelmingly high probability.

5.2. Liveness under targeted DoS attacks

Eges can defend against DoS attacks and partition attacks targeting committee nodes under the threat model in
Section 3.2. Since from a single node’s point of view, it cannot distinguish whether a remote node is under DoS attack or
is partitioned, Eges handles these two attacks altogether.

Eges has three types of committee nodes for each block, a proposer, nA acceptors, and nα arbiters, randomly selected
rom all nodes in the system. Because of Eges’s stealth committee abstraction (Section 4.2), the identity of each committee
ode is unknown to attackers outside SGX enclaves before the node sending out its first protocol message.

emma 3. For any block index n, a DoS attacker cannot distinguish whether an Eges node is a real acceptor or a fake acceptor
or this nth block by observing from outside Eges enclaves.

roof. This lemma is proved by two steps. First, the identities of real Eges acceptors for the nth block (i.e., An) is unknown
o the attacker before each acceptor takes its role and sends out its first protocol message. This is because An are randomly
elected by Pn−lb, inside its enclave for integrity and confidentiality; these identities are secretly transferred to each real
cceptor’s enclave (Section 4.2), so that only each acceptor’s enclave knows whether the node is in An.
Second, an acceptor sends ACK messages to both the proposer and arbiters, and its identity becomes explicit after

ending out its first ACK message, so Eges uses fake acceptors to conceal the real ones. If observed from outside enclaves,
he fake acceptors behave identically as real ones so an attacker cannot differentiate the real acceptors and attack them.
ges achieves this with three design points. (1) fake acceptors are randomly selected from all nodes for each block so
hat an attacker cannot determine the fake acceptors by monitoring network packets (Section 4.2). (2) Real and fake
cceptors’ Eges enclaves respond to protocol messages (propose and arbit) in the same way if observed outside the
nclaves (Section 4.3), so an attacker cannot distinguish real or fake acceptors by watching their behaviors. (3) All messages
rom real or fake acceptors have the same format, encrypted with the receiver’s public key (Section 4.3) and can only be
ecrypted in the receiver’s enclave, so an attacker cannot differentiate real acceptors from fake ones by watching the
acket content.

emma 4. For each block index n, with the attack model defined in Section 3.2, a DoS attacker cannot make Eges fail to
chieve consensus on proposaln by targeting the proposer Pn.

roof. This lemma is proved by two steps. First, same as the first step in the proof for Lemma 3, Pn’s identity is unknown
o the attacker before sending out proposaln. Second, the identity of Pn becomes explicit after broadcasting its proposaln
nd may be targeted attacked when it is waiting for quorum ACKs. However, since Eges has many (i.e., nα > B) arbiters
hat can help to finalize the proposaln, attacking Pn will not affect Eges’s liveness. Note that targeting the arbiters is not
iable either as the total number of arbiters nα is set to be larger than the attack budget B; as long as one arbiter is not
nder targeted DoS attack, it can finalize the current nth block.

heorem 2 (Targeted DoS Resistance). For any block index n, the probability for an DoS attacker with budget B (defined
n Section 3.2) to succeed in preventing Eges from achieving consensus on proposaln by targeting Eges’s committee is
(X > (1 − τ ) × nA), where X ∼ Hypergeom(nA + nF , nA, B), and nF is the number of fake acceptors defined in Section 4.2.
14
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Fig. 8. Parameter selection for τ and D on 10K nodes for different nA values.

Fig. 9. Connected component size required to ensure liveness with different D values.

roof. Due to Lemma 4, a smart attacker will target Eges’s acceptors instead of wasting its budget on proposers or arbiters
n the committee. However, due to Lemma 3, the attacker can only randomly select B targets from the nA + nF real and
ake acceptors. To successfully mount targeted DoS attacks, the attacker must guess at least (1 − τ ) × nA real acceptors,
nd the probability is calculated as in the theorem.

Theorem 2 shows that the probability of a successful targeted DoS attack can be limited very small by controlling
he ratio of fake and real acceptors. For instance, if Eges has nA = 300, τ = 59% and (expected) 600 fake acceptors;
f the attacker’s attack budget B = 300, the probability that the attacker can luckily attack more than (1 − τ ) × nA real
cceptors for one block is 0.3%. Moreover, even if the attacker is so lucky that it successfully guessed more than (1−τ )×nA
cceptors for some block (say nth), Eges can still consistently determine whether to confirm proposaln or emptyn using
he committees for subsequent blocks (Section 4.3); in other words, the attacker must constantly be so lucky to make
ges lose liveness. Overall, Eges has a strong resistance to targeted DoS resistance. We will also quantify Eges’s ability to
olerate ubiquitous (non-targeted) DoS or network partition attacks in Section 5.3.

oS attacks targeting network links. Note that Eges’s targeted attack model (Section 3.2) handles only DoS or partition
ttacks targeting specific Eges nodes. A more powerful attacker may also target Eges’s major communication links. From
he protocol aspect, Eges mitigates such vulnerabilities in the Network layer (in the OSI model [86]) by using different
ommittees for different blocks: Eges’s protocol traffic is spread among the whole P2P network rather than centralized
mong a few dedicated nodes. However, when Eges is deployed, Eges’s communication messages may be aggregated in
he Link or Physical layer. For instance, if a large number of Eges nodes are hosted in the same data center (DC), the links
onnecting this DC and the Internet may be susceptible to attacks. Fortunately, such attacks are usually easier to detect by
he administrator of a permissioned blockchain. Moreover, such attacks are not adaptive, and as long as a great majority
f nodes are connected, Eges can achieve practical liveness. Section 7.3 shows the relation between Eges’s liveness and
he maximum connected component size in the P2P network. Nevertheless, Eges cannot ensure liveness under arbitrary
artitions, and previous work shows that it is theoretically impossible to guarantee both consistency and liveness under
artitions [28,87], so Eges choose to ensure consistency.

.3. Parameter selection

Eges has two correlated parameters τ and D. Fig. 8 shows the relation between τ and D to ensure Eges’s safety. With a
maller τ , a proposer Pn can finalize proposaln after collecting fewer ACKs from acceptors, so subsequent proposers need
ore rounds of checking (larger D) when trying to finalize the emptyn (Section 4.3).
The τ and D values also affect Eges’s ability to achieve liveness (confirm non-empty blocks) on network partitions (or

biquitous DoS attacks). We quantify this ability to the ‘‘minimum largest connected component size’’ (cc%) required in
he P2P graph, provided that nodes in a connected component can reach each other before a timeout. A smaller cc means
hat Eges is more robust to partition and ubiquitous DoS attacks. From a mathematical aspect, as long as the probability
f finalizing a proposal is non-zero, the probability pD that D consecutive proposals are successfully finalized is always
arger than zero, inferring that eventually Eges can achieve liveness. However, we conservatively calculate the required
c to make the pD larger than 5% for practical liveness, as shown in Fig. 9. In our evaluation, we chose τ as 59%, D as 4,
as 300, which ensures both safety and achieves good liveness on partition attacks (Section 7.2).
A
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Fig. 10. Parameter selection and liveness requirements if Eges lets each node to independently decide its committee membership.

Fig. 10 shows the parameter selections if Eges does not use its stealth committee mechanism, but lets each node
independently determine whether it is an acceptor with the probability of M/nA, with nA being the expected number of
acceptors for each block. If Eges makes such a design choice, the Re (Section 5.1) becomes a binomial distribution with the
robability of p × M/nA, and other distribution changes similarly. As shown in Fig. 10, Eges would need a larger quorum
ize τ × nA and achieve worse liveness on network partition.

. Implementation

We selected the Golang implementation of Ethereum (i.e., geth) as our codebase because geth is heavily tested on the
nternet. We leveraged the P2P libraries from geth and rewrote the functions for generating, verifying, and handling new
locks. Since SGX only provides SDKs in C/C++, we used CGo to invoke ECalls. We modified 2073 lines of Golang code and
mplemented the consensus protocol for 1943 lines of C code. For asymmetric key-based encryption, we used ECC-256
rom the API provided by the SGX SDK. For timeouts, we used the trusted timer API sgx_get_trusted_time provided by the
GX platform
Each Eges node has three modules: a consensus module running the Eges consensus protocol and storing nodes’

member list (Section 4), a P2P module connecting to a random set of peers and relaying messages using the Gossip [76]
protocol, and a blockchain core module storing confirmed parts of chain and client transactions. Only the consensus
module runs in the node’s SGX enclave.

In Eges, a node may finalize a block before knowing its preceding blocks. Therefore, when an Eges proposer proposes
a block or a node finalizes a block, it lefts the block’s field of ‘‘hash of the previous block’’ empty, and Eges’s enclave
computes this field when confirming the block. In essence, Eges achieves consensus on a totally ordered sequence of
transactions, same as Hyperledger Fabric [2], and encapsulates these batches into a hash-chain of blocks while confirming
them.

6.1. Dynamic membership and attestation

To support dynamic memberships, Eges leverages the idea from Scifer [44] to record the joining of new nodes as
transactions on the blockchain. This mechanism ensures Lemma 1 because all updates to the member list are only
determined by confirmed blocks.

When a node i wants to join the system, it needs to find a member node j to do attention (Section 2) through an
out-of-band peer discovery service. We assume that node i knows the genesis (0th) block, so node i can inductively verify
the blockchain, without relying on whether peer j is malicious.

A node i joins Eges with three steps. First, i launches its Eges enclave, which generates its account (pki, ski) and
creates the hardware monotonic counter c for defending forking attacks (Section 6.2). The node’s account is securely
saved to permanent storage using SGX’s seal mechanism [22] for recoveries from machine failures (e.g., power off). Then,
i sends a join request to j. Second, j does a standard SGX remote attestation [22], which succeeds with a signed quote Qi
from Intel’s attestation service, and i’s enclave transfers its public key pki and counter value c to j’s enclave through the
secure communication channel between two enclaves created during attestation. Third, node j’s enclave creates a signed
registration transaction including pki, c, addri,Qi and i’s ip address. Node i joins Eges when the transaction is included in
a confirmed block.

6.2. Enclave interactions

Fig. 11 shows the implementation of Eges enclave. An Eges enclave holds three data structures shared among ECalls:
cache, is_proposer, and is_acceptor, each as a hash map. As explained in Section 4.1, the cache saves received block
roposals. In our implementation, the cache only keeps the hash values of block headers instead of whole blocks to save
nclave memory. is_proposer and is_acceptor are hash maps with block indices as keys and boolean as values, saving
hether this node will be in the committee for a future block.
In Fig.11a, when a node’s blockchain core module confirms the (n − lb)th block, it asynchronously invokes an ECall

etting the enclave check whether it will be the proposer/acceptor for the nth block (Section 4.2). In Fig.11b, when a
16
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Fig. 11. Eges’s enclave interactions (ECalls and OCalls). The enclave module is shaded in orange.

able 2
ges’s evaluation parameters.
Config # Nodes Acceptor group size (nA) D τ LB timeout SGX mode

Cluster 300 100 4 65% 5000 2 s Hardware mode
AWS Cloud Up to 10 K 300 4 59% 10000 3 s Simulation mode

node’s core module appends the (n − 1)th block, it invokes an ECall with a batch of transactions, and the enclave will
follow the protocol in Algorithm 1 if it is the proposer for the nth block. In Fig.11c, when a node’s P2P module received a
propose request, it invokes an ECall passing this request to the enclave, and the enclave will generate an ACK that will be
sent through UDP using an OCall if it is an acceptor (Algorithm 3) or fake acceptor (Algorithm 2 Line 4). If it is an arbiter
for the nth block, it will also start working as an arbiter (Section 4.4).

nclave forking attacks. In the P2P scenario, one challenge is enclave forking attacks [88]. Eges must permit a node to
reuse its sealed account (Section 6.1) in case the node restarts its machine. However, a malicious node can create multiple
copies of Eges enclaves with the same account pk, directs different messages to them, and lets them generate conflicting
messages (e.g., block proposals). Existing defending techniques [88,89] work in the client–server manner, where clients
attest and communicate to only a single server. These techniques are not suitable for P2P settings because they will need
every two Eges nodes to connect and attest each other.

Eges defends such attacks using SGX’s platform counter [22], which is monotonic among all enclaves on the same
machine. When a node launches its Eges enclave, the enclave increments and read this counter value c and enclose this
c to its registration transaction: the node’s membership is bound to the enclave with counter value c but not the account
pk. When the enclave sees a registration with the same account but a higher counter value, it quits automatically.

7. Evaluation

Evaluation setup. Our evaluation was done on both our own cluster with 30 machines and the AWS cloud, with
parameters shown in Table 2. In our cluster, each machine has 40 Gbps NIC, 2.60 GHz Intel E3-1280 V6 CPU with SGX,
64 GB memory, and 1TB SSD. On AWS, we started up to 100 c5.18xlarge instances (VMs) running in the same city, each
of which has 72 cores, 128 GB memory, and up to 25 Gbps NIC. We ran up to 100 Eges nodes on each VM (10k nodes in
total), with each Eges node running in a docker container.

To evaluate Eges and baseline protocols in a geo-replicated setting, while running Eges on both our cluster and AWS,
we emulated the world scale Internet by using the Linux traffic control (TC) to limit the RTT between every two nodes to a
random value between 150 ms and 300 ms. These settings are comparable to Algorand’s setting on AWS. As AWS does not
provide SGX hardware, we ran Eges in the SGX simulation mode on AWS and in the SGX hardware mode on our cluster;
we show that Eges’s performance in simulation mode is roughly the same as hardware mode because Eges’s performance
is bound to network latency in WAN (Section 7.1). The scalability (Fig. 12) and robustness (Fig. 13) experiments were
done on AWS, and the rest were in our cluster.

We evaluated Eges with nine consensus protocols for blockchain systems, including five state-of-the-art efficient BFT
protocols for permissioned blockchains (BFT-SMaRt [7], SBFT [8], HoneyBadger [32], and HotStuff [9]), two SGX-powered
consensus protocols for permissioned blockchains (Intel-PoET [26] and MinBFT [33]), the default consensus protocol in
our codebase (Ethereum-PoW [31]), and two permissionless blockchains’ protocol that runs on dynamic committees
(Algorand [1] and Tendermint [18]). A detailed description of these protocols is in Section 2.2.

Since Algorand’s open-source code is under development, and we were unable to deploy its latest release [90] to the

same scale as Eges and Algorand’s paper (i.e., 10k nodes), we took Algorand’s performance from Figure 5 in its paper [1].
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Fig. 12. Scalability to the number of nodes on the Internet.

Fig. 13. Eges’s throughput on DoS and network partition attacks. There were 1000 nodes on AWS at 0 s.

To make the comparison fair, we make Eges’s network setting more rigorous than Algorand’s: Algorand divided nodes
into multiple cities where intra-city packets have negligible latency, while Eges lets the RTT among any two nodes be at
least 150 ms.

For all evaluated protocols, we measured their performance when each of them reached peak throughput. For an
apple-to-apple comparison of latency, we adopted Algorand’s method to measure transactions’ server-side confirmation
time: from the time a transaction is first proposed by a committee node to the time the transaction is confirmed at
this node, excluding the time for clients’ transaction submissions. We measured the server-side instead of the client-side
latency because this method precludes the disturbance of client behaviors as these protocols run on different blockchain
frameworks. For instance, in Ethereum, PoET (running on Hyperledger Sawtooth [26]), and Eges, a client submits a
transaction to a random node, and the transaction is disseminated via P2P networks; in BFT-SMaRt, a client submits
transactions to a fixed node (i.e., the leader); in Algorand, a consensus node directly packs a block with a fixed amount
of data (e.g., 1MB) instead of using separate transactions.

We set Eges’s transaction size to 250 bytes, a typical transaction size for general data-sharing applications [61,91].
Since Algorand reported throughput on block size, we convert it to txn/s by assuming the same size of transactions as
Eges’s. The transaction sizes for the other eight baseline protocols are either equal to or smaller than that of Eges. Our
evaluation focuses on these questions:

Section 7.1: Is Eges efficient and scalable?
Section 7.2: What is Eges’s performance under DoS attacks?
Section 7.3: How sensitive is Eges to its parameters?
Section 7.4: How do Eges performance and fault tolerance compare with notable BFT protocols?
Section 7.5: What are the limitations and future work of Eges?

7.1. Efficiency and scalability

Table 1 shows the performance comparison of Eges and eight baseline protocols. As Alogrand’s paper [1] evaluated at
least 2K nodes, we postpone the comparison between Eges and Algorand to when we evaluated Eges’s scalability.

Overall, in the geo-replicated setting, Eges achieved comparable performance to MinBFT, Tendermint, HotStuff, and
SBFT. We ran BFT-SMaRt in its default setting (ten nodes), and it showed higher throughput and lower latency than Eges.
BFT-SMaRt is more suitable for small-scale permissioned blockchains where a few companies run nodes in a controlled
environment, so it lets nodes send messages to each other directly. In contrast, Eges is designed for tolerating targeted
DoS attacks on committee nodes, so it has two P2P broadcasts to confirm a block. Section 7.4 shows that Eges’s scalability
and fault tolerance are better than BFT-SMaRt.

SBFT and HotStuff had a lower throughput and a higher latency than Eges. They rely on designated nodes to collect
he consensus messages that were originally all-to-all broadcasted and to distribute a combined message to all nodes.
lthough this approach improves scalability, it also incurs two more RTTs, limiting their performance in a geo-distributed
eployment. Moreover, an attacker targeting these designated nodes will cause a dramatic performance drop to the
ystem, which is evaluated in Section 7.4.
18
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able 3
roposer’s micro-events for finalizing a block.
blk size txns/blk # ECalls CPU usage Network usage

750 kB 3000 97 12.4% 15.53 Mbps

HoneyBadger showed a lower throughput and a higher latency than Eges because HoneyBadger uses multiple rounds of
roadcasts for a single block, which incurred a long latency in a geo-distributed setting. Eges showed orders of magnitude
etter performance than PoET and Ethereum, two PoW protocols. Their performance is limited by the time for solving
oW puzzles (or sleep time) and the number of blocks to wait for before confirming a block (Section 2.3). Our evaluation
esult for PoET is similar to a recent study [92].

reakdown and micro-events. To understand Eges’s latency, we recorded the time taken for the two steps of Eges’s
rotocol (Section 4.3): seeking for quorum ACKs took 576 ms; broadcasting finalize messages took 329 ms. The first step
ook a longer time because Eges broadcasts the proposed block in its P2P network in this step. This P2P broadcast time
s essential in any blockchain system because new blocks need to be broadcasted to all nodes.

GX’s overhead. Table 3 shows the micro-events of Eges. The ECall column shows the number of times that Eges’s
roposer node entered its SGX enclaves on finalizing a block. Since each ECall only takes around 3us [22], and Eges’s
roposer only did 97 ECalls on average for each block, running in SGX hardware mode and simulation mode makes little
ifference for Eges’s performance.

calability. To evaluate Eges’s scalability, we ran 100–10000 nodes on AWS and evaluated its confirm latency with the
ame block size as in the cluster evaluation. Fig. 12 shows the result. The latency is divided into two parts. The figure
hows that the seeking for quorum ACKs phase of Eges (Section 4.3) is the dominant factor because it broadcasts the
roposed 750 kB block on the P2P network. Fortunately, a P2P broadcast latency is proportional to approximately the log
f the number of nodes [93], indicating Eges’s reasonable scalability. The increase rate was slightly greater than the log
cale because 100 nodes were run in one VM with CPU and NIC contentions. Eges’s latency on AWS was slightly faster
han on our cluster, because AWS CPUs are faster.

Compared to Algorand’s performance in Table 1, Eges showed 2.3X higher throughput and 16.8X faster latency than
lgorand. This is due to two reasons. First, Algorand’s VRF-based method selects multiple proposers for each block, and
lgorand uses a reduction step to select one proposal by these proposers. Moreover, as the VRF-based approach cannot
ontrol the exact number of proposers, nodes must wait for a conservatively long time in the reduction step (Section 4.3).
n contrast, Eges’s stealth committee abstraction selects one proposer for each block, without the need for such a reduction
tep. Second, Eges’s consensus protocol has only two rounds in gracious runs to confirm a block (Section 4.3).

.2. Performance on DoS attacks

To evaluate Eges’s robustness under DoS attacks, we ran Eges with 1000 nodes on AWS with nA = nα = 100, and
onducted targeted DoS attacks that are compliant with our attack model (Section 3.2): we assumed the attacker’s budget
= 10% of total nodes, and we set the expected count for fake acceptors and arbiters to be 200. Each time we targeted the
urrent proposer and 99 arbiters or real/fake acceptors (because we cannot distinguish real acceptors). For each attack,
e blocked all communication from the attacked nodes for 20 s.
We deem such attacks to be powerful enough, as no existing protocols for permissioned blockchain can maintain

iveness under such powerful attacks. As shown in Section 7.3, existing consensus protocols, which ran on static committee
odes, lost liveness until the DoS attack ended. In contrast, each time after we attacked 100 nodes, Eges’s throughput had
temporary drop and recovered before the DoS attack ended, which shows that Eges can ensure practical liveness under
uch powerful attacks.
After the first attack, the line started to go up after 11.3 s, much slower than the other attacks (about 3.1 s). We

nspected the log and found that the slow recovery was because the proposer for the next block happened to be attacked,
nd Eges waited until D more blocks to confirm that block as empty. After the second attack, the line took about 7.2
to go up. This is because most real acceptors happened to be attacked together with the proposer, which makes the
rbiters failed to finalize the block for the proposer (Section 4.4). For the other three attacks, the arbiters successfully
elped corresponding proposers to finalize their blocks quickly.
To evaluate Eges performance on network partitions, we manually divided the network into two partitions at 200 s and

econnected them at 400 s, with one partition containing 80% nodes and the other containing 20% nodes. Fig. 13b shows
he throughput measured in the large partition. Overall, the large partition maintained liveness during the partition. The
mall partition did not succeed in confirming any block during the partition and caught up after the network reconnected,
reserving safety. There are two obvious throughput drops in the figure, which are caused by the pre-designated proposers
eing in the small partition, and Eges confirmed empty blocks for them. Note that Eges may temporarily lose liveness
n catastrophic partitions (e.g., 50–50 or 40-30-30 partitions) but can preserve safety. Section 7.3 shows a quantitative
nalysis of how Eges can preserve liveness under network partitions.
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Fig. 14. Sensitivity on block size, acceptor numbers, and expected fake acceptor numbers (cluster setting).

Fig. 15. Comparing Eges, SBFT, and BFT-SMaRt.

7.3. Sensitivity

Figs. 14a and 14b show Eges’s performance sensitivity on block size. When the block size was larger, Eges’s throughput
did increase, but its block confirm latency also increased. In our evaluation, we set Eges’s block size to be 750 kB, which
is a near-optimal setting for both throughput and latency.

Eges’s throughput and confirm latency depend on three important protocol parameters, the number of acceptors, the
number of fake acceptors, and block size. Figs. 14c and 14d show the sensitivity results. Eges’s performance turns out to
be insensitive to the first two parameters because the latency is dominated by the time for broadcasting the new block
on the P2P network.

7.4. Comparison to BFT-SMaRt and SBFT

Since BFT-SMaRt with 10 (committee) nodes was faster than Eges with 100 acceptors, we evaluated both of them on a
different number of nodes because more such nodes can tolerate more faults and DoS attacks. Fig. 15a shows the results
using the same setting for both systems (e.g., in our cluster, TC disabled, and the same number of transactions in each
batch). Overall, Eges throughput was stable because the number of acceptors affects little on the latency in the seeking
for quorum ACKs phase. BFT-SMaRt’s throughput drops dramatically because its protocol involves a quadratic number of
messages on the number of ordering nodes.

Fig. 15a also shows SBFT’s performance. In the non-geo-replicated mode, when the number of nodes increased from 4
to 62, SBFT’s throughput dropped from 38.2K to 6.9K transactions/s. This is because SBFT’s collectors (Section 2.2) need
to collect more messages and to verify their signatures, so the time spent in collectors increased from 2.5 ms to 13.1 ms.

Fig. 15b shows the performance comparison of Eges, BFT-SMaRt, and SBFT in the geo-replicated setting. Eges’s
hroughput was at least 3.4X larger than both systems on 62 nodes. BFT-SMaRt’s performance trend was similar to the
o-delay setting because of its PBFT all-to-all broadcasted messages. SBFT’s throughput also dropped dramatically because
ome nodes became stragglers for the collectors due to the varied RTT. Since SBFT’s fast path can only tolerate a small
umber of straggler nodes (usually two (Section 2.2)), we observed that 87% of the consensus rounds in SBFT have reverted
o the slow path (PBFT).

More importantly, Eges can safely switch its acceptor groups across blocks, and it tolerated various failure scenarios,
ncluding DoS attacks (Fig. 13a). For comparison, we evaluated the performance of BFT-SMaRt and SBFT on node failures
i.e., DoS attacks targeting consensus nodes). Fig. 15c shows the result of BFT-SMaRt with its default 10-node setting. We
andomly killed one node on each vertical line. The third time we killed its leader coincidentally, so there was a noticeable
erformance drop. BFT-SMaRt’s throughput dropped to zero after we killed the fourth node. For SBFT (Fig. 15d), we started
ith 62 nodes and killed 7 nodes every time. Since SBFT’s fast path can only tolerate two crashed or straggler nodes, its
hroughput dropped significantly (reverted to PBFT) after the first kill.

Overall, Eges is complementary to BFT-SMaRt and SBFT: BFT-SMaRt is the fastest in a small scale; SBFT has better
calability, but its high performance requires a synchronous network (stated in their paper). Eges achieved reasonable
fficiency and DoS resiliency in a geo-replicated setting.
20
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.5. Discussions

Eges has two limitations. First, Eges requires each node to have an SGX device. We deem this requirement reasonable
ecause SGX is available on commodity hardware, and both academia and industry are actively improving the security of
GX. Recent permissionless [24] and permissioned blockchains [23,26,33] also use SGX. Second, Eges targets Internet-scale
ermissioned blockchain systems (e.g., a global payment system [3]), while for small-scale deployments (e.g., supply chain
mong a few small companies), existing consensus protocols (e.g., BFT-SMaRt) are more suitable.
One device may want to join multiple instances of Eges for different applications. As shown in Section 7.1, Eges is

etwork-bounded instead of CPU-bounded. Therefore, the co-running multiple instances of Eges will not affect each
thers’ performance if the bandwidth of this device is not the bottleneck. More importantly, thanks to Eges’s adoption of
EEs on each member node, multiple applications can co-run on the same Eges instance. Specifically, a major concern for
ultiple applications to share the same blockchain stems from data access isolation [94,95]. Fortunately, in Eges, since
ach Eges node is equipped with an attested Eges enclave, Eges can leverage existing work (e.g., Ekiden [25]) to provide
ata privacy among these co-running applications.
Our paper reveals that, in addition to safety and high performance, DoS resistance is also an essential evaluation metric

or a practical Internet-scale blockchain application, including e-voting [96], decentralized auction [97], and payment
ystems [3]. Moreover, the attested SGX enclave on each Eges node brings the potential to port existing centralized
GX-powered applications [35,67,68,98] onto Eges and to make them DoS-resistant. For instance, ToR [99] is a popular
nonymous network and is widely used for providing client anonymity to blockchain systems [100,101]; SGX-ToR [35]
reatly improves the security and privacy of ToR by leveraging SGX. However, SGX-ToR relies on a few directory servers for
aintaining the list of attested nodes (relays), which has been shown [36] to be susceptible to DoS attacks. By deploying
GX-ToR’s directory service as a blockchain application on Eges, SGX-ToR can be made DoS-resistant.

. Conclusion

We have presented Eges, the first efficient permissioned blockchain consensus protocol that can tolerate targeted DoS
nd partition attacks. Eges achieves comparable performance to the existing fastest permissioned blockchain’s consensus
rotocols while achieving much stronger robustness. Our evaluation reveals that, in addition to safety and performance,
oS resistance should also be an essential evaluation metric for a blockchain system deployed on the Internet. Eges’s
ource code is available on github.com/hku-systems/eges.
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