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Abstract—Random numbers play a crucial role in decen-
tralized applications (dApps) like decentralized finance (DeFi)
and non-fungible tokens (NFTs). However, their generation faces
challenges due to blolckchain’s deterministic and decentralized
nature, risking smart contract security and ecosystem stability.
Prior solutions, including Oracles, employing commit-execute
schemes, suffer from higher transaction fees, extended processing
times, and increased on-chain storage, compromising efficiency.

This paper proposes a novel random number provider (RNP)
protocol for smart contracts, eliminating dependencies on tradi-
tional commit-execute approaches. Furthermore, we systemati-
cally identify potential random number-related attacks on smart
contracts, particularly Post-reveal Undo Attacks (PUAs), where
attackers may reverse contract operations when randomness is
unfavorable, and discuss the security requirements. Our protocol
addresses these attacks by (1) incorporating distributed random
beacons (DRBs) with consensus processes, bridging the semantic
gap between DRB and consensus, and (2) thoroughly analyzing
and classifying four types of PUA and offering robust mitigations,
alongside presenting a security proof.

Our experiments show the protocol significantly enhances
response times and security for random number queries in smart
contracts, slashing request fees by at least 89% and reducing on-
chain data by 76.4% versus current methods. This work advances
the integration of DRB protocols and consensus mechanisms,
securing and optimizing random number applications in dApps,
thus fostering the creation of more dependable, robust systems.

I. INTRODUCTION

Decentralized applications (dApps), based on smart con-
tracts, such as decentralized finance (DeFi) and non-fungible
tokens (NFTs) [46], rely heavily on public random num-
ber providers (RNPs) for determining the winners, shuffle
cards [46], and ensuring the uniqueness, rarity, and equitable
distribution of NFTs [37], [76], [81]. However, generating se-
cure random numbers within smart contracts faces challenges.
Therefore, some legal toolkits use random jurors to facilitate
efficient dispute resolution [72]. The difficulty lies in the
deterministic and decentralized nature of blockchain systems,
which exposes vulnerabilities to adversaries aiming to predict
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or bias randomness, leading to various attacks [41], [60], [90],
[92]. For example, a dApp called EOSBet encountered a nonce
attack in 2018, where attackers influenced the RNP to control
game outcomes, resulting in token theft [42].

Therefore, secure RNP protocols are required to produce
random values resistant to possible previous attacks [26].
Schemes like distributed random beacon (DRB) [2], [19],
[31], [36], [43], [56], [62], [87], [88], [93], the verifiable
delay function (VDF) [6], [51], and verifiable random function
(VRF) [4], [35] offer promising solutions for generating secure
random numbers. However, the integration of these generated
numbers into smart contracts necessitates a commit-execute
RNP mechanism, as illustrated in Figure 1a. Specifically, it
requires recording user parameters in the transaction Tcommit
during a block interval and generating universally accessible
randomness. Then a second transaction Texecute provides
random numbers in the subsequent block time, therefore pre-
venting attackers from predicting or bias the random numbers.
Although this approach realizes a secure RNP, it results in
high transaction fees, extended processing time, and increased
on-chain storage. Moreover, existing schemes do not consider
blockchain-specific security needs and operational limitations,
such as the risk of post-reveal undo attacks (PUAs) (§IV),
where attackers can intentionally revert the execution of
Texecute if the result is not profitable. Taking these into
account, current RNP approaches reveal their inadequacy for
application in the context of smart contract execution, causing
the need for a new approach.

BFTRAND Protocol: We present a new low-latency RNP
protocol, called BFTRAND, which is specifically designed to
deliver random numbers to smart contracts within a single
consensus round, as illustrated in Figure 1b. BFTRAND ad-
dresses the challenges associated with existing commit-execute
RNP schemes, such as Chainlink VRF [35] and Drand [45],
while offering a secure and efficient approach to generate
random numbers for smart contracts.

BFTRAND generates low-latency random numbers during
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Figure 1: Comparison between commit-execute RNP and
BFTRAND RNP. Tcommit and Texecute represent transactions
to commit function parameters and execute the function, re-
spectively. Solid lines indicate one consensus round. Commit-
execute RNP (a) requires two transactions in two distinct
consensus rounds to supply the requested random number,
while BFTRAND (b) fulfills one request within one consensus
round. RNP components are shaded in gray

the execution of smart contracts, resulting in reduced response
times for random number requests. More specifically, By
incorporating DRBs into the consensus process, BFTRAND
introduces a beacon for each block and quickly generates
random numbers for smart contracts upon receiving requests.
Furthermore, BFTRAND includes robust security measures
to protect against possible random number attacks, including
post-reveal undo attacks (PUA)(§IV).

Challenges: Our proposed protocol tackles two main chal-
lenges: seamlessly integrating DRB without compromising
consensus efficiency and mitigating possible PUA risks.

Insufficiency of DRB. Although the direct request-response
paradigm introduced by BFTRAND offers a substantial im-
provement in delivering randomness for dApps, integrating
DRBs with blockchain consensus mechanisms reveals poten-
tial security mismatches. To address this problem, we make a
thorough analysis to harmonize these two components. Specif-
ically, DRBs inherently possess security properties such as
pseudo-randomness and uniqueness [53], [57], [85]. However,
when embedding DRBs into blockchain systems to provide
random numbers for smart contracts, we encounter unique
security and performance challenges stemming from divergent
security premises and blockchain-specific constraints. A prime
example is the inherent operational difference between DRBs
and Byzantine Fault Tolerance (BFT), a foundational con-
sensus framework. DRBs function through sequential stages,
contrasting with the BFT’s round-based consensus, where each
round is further divided into multiple views under a common
round context. Therefore, we derive careful management of
views within BFT rounds to prevent adversaries from predict-
ing random numbers across views (§V-A).

Post-reveal Undo Attack (PUA). The inherent characteristics
of blockchain present unique challenges in developing a secure
Random Number Provider (RNP) protocol for smart contracts.
Our analysis reveals that including random numbers in smart
contracts at runtime may expose a previously unexplored

attack surface, termed the Post-reveal Undo Attack (PUA),
which exploits blockchain transactions’ atomic nature. Specif-
ically, if a transaction in a blockchain is unsuccessful, its
associated operations are undone [10]. An attacker could
exploit this by intentionally failing smart contract transactions
when outcomes are adverse, leading to wasted operations
and potential system manipulation. This attack leverages the
attacker’s capacity to assess state changes before finalizing
a malicious transaction. We categorize PUAs into four types:
Contract PUA, Fallback PUA, Fee PUA, and Script PUA (§IV).

To address these problems, we define random number secu-
rity by identifying essential security criteria our protocol must
meet when integrating DRBs into the consensus process. These
criteria are pseudorandomness, uniqueness, availability, and
irreversibility. The pseudorandomness evaluates the ability to
generate random numbers that are unpredictable and unbiased.
The uniqueness ensures that each random number generated is
deterministically unique and cannot be biased. The availability
guarantees that the RNP can respond consistently to requests
for random numbers without allowing attackers to disrupt the
consensus process. Lastly, irreversibility ensures that outcomes
of contract functions using random numbers, once recorded on
the blockchain, are final and non-reversible.

By addressing these aspects and carefully designing the
integration, our protocol aims to provide secure random num-
bers while maintaining the performance of the blockchain
consensus without additional consensus phases (§III-C).

Implementation and Evaluation: To assess BFTRAND
against existing commit-execute RNPs, we instantiate a proto-
type relying on the DRB scheme proposed in [53], [57]. Addi-
tionally, we implement Instancecommit−execute as a baseline
to simulate the behavior of commit-execute RNPs. Our results
demonstrate that BFTRAND reduces on-chain data by 76.4%
and decreases the cost of fulfilling a random number request
by at least 89%, while introducing a minimal 0.002% increase
in consensus time (assuming a 15-second block time). To the
best of our knowledge, our protocol is the first secure and low-
latency RNP protocol specifically designed for smart contracts.

Contributions: Our contributions are summarized as follows:

1) We introduce a novel RNP protocol, BFTRAND, which
securely integrates distributed random beacons into the
consensus, enabling efficient and secure provisioning of
random numbers for decentralized applications.

2) We provide the first comprehensive and systematic anal-
ysis of random number security in smart contracts and
rigorously define the concept of random number security.
This definition includes the requirements for pseudo-
randomness, uniqueness, availability, and irreversibility,
which must be fulfilled by RNP protocols.

3) We identify a new risk on random numbers, named Post-
reveal Undo Attack, and propose the security property
of irreversibility for RNPs to address this problem. This
property ensures the security and integrity of RNPs in
smart contracts by preventing such attacks.
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4) We prove the security of BFTRAND under the definition
of Random Number Security.

5) We evaluate the performance of BFTRAND, illustrating
its efficiency and scalability. Our evaluation shows that
it outperforms existing commit-execute RNP schemes
in terms of transaction throughput and computational
overhead while maintaining a high level of security.

II. BACKGROUND

This work focuses on a blockchain system based on Prac-
tical Byzantine Fault Tolerant (PBFT) with smart contracts
consisting of n nodes, N = N0, · · · , Nn−1. The set of
corrupted nodes controlled by the adversary A, is represented
as C. Let D,R : N −→ N denote polynomial-time functions,
with both D(λ) and R(λ) bounded by a polynomial in λ.
Furthermore, let F : Dom −→ Ran be a function with domain
Dom and range Ran, where Dom and Ran are sets with sizes
2D(λ) and 2R(λ), respectively. We also assume the existence
of a pseudorandom function (denoted as PRF).

A. Blockchain

This section provides a brief overview of fundamental
concepts and technologies relevant to our work.

1) Smart Contracts: Smart contracts are self-executing
agreements with terms encoded in the program. They are used
primarily in decentralized applications (dApps) built on plat-
forms such as Ethereum [29] and NEO [75]. These contracts
automate complex business logic and enforce contractual terms
without intermediaries. They are immutable and transparent,
ensuring a high level of trust and security.

2) Byzantine Fault Tolerance: Byzantine Fault Tolerance
(BFT) represents a class of consensus algorithms, including
PBFT [33] and its variants [3], [8], [12], [15]–[17], [30],
[32], [38], [63], [66], [68], [71], [75], [95], [96], [98], which
address the Byzantine General Problem in distributed systems
and provide instant finality [67]. Currently, 17 of the top
80 blockchain projects use BFT consensus [39], including
Theta [77], Neo [75], Algorand [5], and EOS [47].

BFT consensus enables distributed systems to achieve con-
sensus despite faulty nodes exhibiting unpredictable behavior.
It operates in rounds, with each round having one or more
views [33]. At the end of each round, a new block is formed
that represents the consensus of the network. An (f, t, n)
secure BFT protocol with n nodes can tolerate up to t faulty
nodes and is secure for any probabilistic polynomial-time
(PPT) attacker A if 0 ≤ f ≤ t < n/3 for asynchronous
BFT [33]. A BFT consensus protocol adheres to consistency
and liveness properties [32].

For clarity, we will now provide a concise explanation
of PBFT [33], which is a commonly used variant of BFT.
PBFT operates through consensus rounds, with each round
led by a designated leader. The leaders are chosen in a round-
robin fashion. Specifically, the function Leader(b, v, n) → l
is defined to select the leader index l for round b of view v,
where n represents the number of participants. In other words,
given the values of view v, round b and the total number of

participants n, the function Leader outputs the leader index
l. The PBFT algorithm consists of the following phases [33]:
Prepare. The leader receives user requests and transactions and
starts the consensus process by sending a “prepare” message
to the consensus nodes that are not the leader (replicas).
Response. Upon receiving the “prepare” message, a node sends
a ”respond” message to all other nodes, including the leader.
Commit. A consensus node sends a “commit” message after
collecting more than 2t+1 ”respond” messages. Finalize. Once
a node has obtained over 2t+1 “commit” messages, consensus
is achieved and the node provides the execution result to users.
Viewchange: This mechanism is a critical aspect of the PBFT
algorithm to ensure fault tolerance, which is triggered by a
“viewchange” message. Specifically, if a node encounters a
timeout during any of the aforementioned phases, it constructs
and broadcasts a “viewchange” message to request for a fresh
view. If more than 2t view change messages are received, a
new leader will restart the entire process with a new view.

B. Distributed Random Beacons

Distributed Random Beacons (DRBs) are a well-established
class to generate random numbers, which are called beacons
within the DRB context. This algorithm ensures that no single
entity can manipulate or predict the generated values. Various
DRB protocols have been proposed, including Drand [45],
DFINITY [2], RandChain [56], RandPiper [19], DDH-DVRF
and GLOW-DVRF [53], RandHound and RandHerd [93]. The
feasibility of constructing a DRB protocol has been demon-
strated in [53], [57], [85]. Looking ahead, we will utilize the
DRB scheme proposed in [53] in our instantiation, and we
provide a formal definition of DRB as follows.

1) Setup(1λ, k, n). The nodes in N execute this interactive
protocol to establish a random beacon committee, where
λ is a security parameter. The protocol produces a global
public key pk, a list of public keys {pk0, · · · , pkn−1},
and a list of secret keys {sk0, · · · , skn−1}.

2) Partial(strn−1, ski, pk). Given a state strn−1 ∈ Dom of
round rn−1, a secret key ski, and a global public key pk,
the algorithm computes a partial beacon σi and a proof
πi. The output is (i, σi, πi).

3) Comb(strn−1, E , pk). Given a state strn−1 ∈ Dom, a set
E = {σi, πi}i∈I of partial values and proofs from |I| ≥ k
different nodes and a global public key pk, this algorithm
produces a beacon σrn and its proof πrn, or ⊥.

4) Verify(strn−1, σ
rn, πrn, pk). Given an input state

strn−1 ∈ Dom, a pair consisting of a beacon σrn and
proof πrn, and a public key pk, this algorithm verifies
the validity of σrn. It outputs 0 if the beacon is valid
and 1 otherwise.

5) UpdateState(strn−1, σ
rn, πrn, pk). Given the current

state strn−1, a beacon σrn ∈ Ran and its proof πrn

generated at the end of the round rn − 1 (σrn and πrn

can be ⊥), and a global public key pk, the algorithm
outputs the updated state strn for the round rn, or ⊥.

Security Requirements. Pseudorandomness: ensures that the
generated beacon cannot be distinguished from a uniformly
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chosen value in the presence of active adversaries, denoting
unpredictability and bias-resistance; Uniqueness: requires the
UpdateState function to generate a unique and non-repeating
state for each round rn, and the generated random beacon is
deterministically unique with the fixed input, that is, the output
will always be the same with the same input and state, even
if the attacker can access the secret keys of honest parties.

Furthermore, we would like to clarify that the uniqueness
property guarantees that no matter which set of partial values
is used in Comb, as long as the valid partial beacon exceeds
the threshold, they will all result in the same beacon σ.

III. PROBLEM FORMULATION

In this section, we provide a comprehensive overview of
our BFTRAND protocol (§III-A) and examine the security
assumptions (§III-B). Subsequently, we briefly explain the
required security properties (§III-C). In the full version [9],
we provide an explanation of random number attacks.

A. Overview of BFTRAND

BFTRAND aims to provide a low-latency secure random
number service for smart contracts. It generates a random
beacon for each block and derives multiple random numbers
for smart contracts from the generated beacon.

In BFTRAND, a proposal refers to a candidate block that
contains a list of transactions. This proposal will be confirmed
at the end of the consensus process if more than 2t nodes
agree. For the consensus round b > 0 in view v ≥ 0, the
proposal is denoted as Lb,v . To simplify our notation, we use
b to represent both the consensus round and the corresponding
block. BFTRAND is divided into three main sections: Ini-
tialization, Beacon Request, and Randomness Request, each
describing the necessary steps to achieve the desired outcomes.

1) Initialization: Before executing BFTRAND with DRB,
it is crucial to initialize the context of BFTRAND to establish
the execution environment. During this phase, the DRB.Setup
function generates public and private keys for participants.
Additionally, an empty dictionary of random beacons, denoted
by RB = {}, is initialized to store random beacons generated
indexed by unique identifiers.

2) Beacon Request: BFTRAND generates a random beacon
for each block after the point at which new transactions cannot
be created or the block proposal cannot be altered. This beacon
acts as a random seed to produce random numbers within
the corresponding block. A beacon request begins when the
consensus leader sends (Beacon, b, v) to others, where b and
v represent the block and view numbers respectively. Then
a (deterministic) random beacon, rb, is generated by DRB
after BFT’s commit phrase. The beacon is then stored in the
dictionary with the index b as RB[b] = rb.

3) Randomness Request: A smart contract requests ran-
domness by sending a tuple (Randomness, b,m, T ). The
protocol first retrieves the corresponding random beacon from
the dictionary using the index b. Then m random numbers,
(r1, . . . , rm), are calculated and returned to the smart contract.

B. Security Assumptions and Thread Model

This section presents the security assumptions and threat
model of our protocol. We consider a static attacker A, who
has control over up to t < n/3 nodes in the blockchain
network, and the nodes under control are determined before the
consensus protocol is initiated. Furthermore, these controlled
nodes may exhibit Byzantine behavior and the attacker has
complete control over the faulty nodes, including their network
connections, operating systems, and their secret keys. The
attacker is also able to observe the blockchain network, includ-
ing all transactions and consensus messages. If the leader node
is corrupted, the attacker can propose a transaction list that
benefits itself. We assume that the un-corrupted nodes have
enough storage capacity to process blockchain transactions.

C. Security Properties

The random number security analysis can be found in the
full version [9]. To ensure the security of our RNP protocol
can effectively counteract random number attacks on smart
contracts, we have established a set of properties to which
BFTRAND must adhere. Let Π be the RNP protocol, A be
an adversary, and U be a uniform random function. Let D be
a distinguisher that interacts with A and a protocol/function,
then returns 1, if it believes that it interacted with Π, or 0.

1) Pseudorandomness: Pseudo-randomness requires that
generated random numbers are indistinguishable from truly
random numbers within practical time and computation re-
source constraints. It guarantees that an attacker cannot predict
random numbers and launch pre-computation attacks.

2) Uniqueness: Uniqueness stipulates that only one valid
and deterministic random number can be generated for any
given input. Enforcing uniqueness prevents potential adver-
saries from manipulating multiple valid random numbers for
identical inputs or exploiting race conditions. Consequently,
uniqueness effectively mitigates replay attacks and obstructs
validator collusion attacks, thus enhancing RNP security.

3) Availability: Availability ensures the continuous gen-
eration of random numbers by the RNP for each smart
contract request. Protect against potential DoS attacks or other
disruptions that aim to compromise the functionality of the
blockchain system and its applications, enhancing the overall
security and reliability of the system.

4) Irreversibility: The property of irreversibility ensures
that the execution of a transaction does not fail unintentionally.
This security prerequisite significantly reduces the likelihood
that adversaries exploit PUAs to compromise “critical opera-
tions” and reverse the transaction outcome. Consequently, it
provides a solid foundation for the secure execution of smart
contracts that require random numbers.

IV. POST-REVEAL UNDO ATTACK

In this section, we discuss PUA in further detail. We identify
four classes of PUAs: Contract PUAs, Fallback PUAs, Fee
PUAs (which arise from smart contract designs), and Script
PUAs (specific to script-based blockchains). To demonstrate
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1 function MintNFT(from, target, amount)
2 CheckWitness(from)
3 Require(amount == 1)
4 Transfer(from, this, amount)
5 rarity = GetRandom(1) % 2
6 if (rarity == 1){
7 // Cost 0.5 GAS
8 blindBox = RareBlindBox(target, rarity)
9 }else{

10 // Cost 0.6 GAS
11 blindBox = CommonBlindBox(target, rarity)
12 }
13 Mint(target, blindBox)
14 Transfer(this, target, 1, {blindBox})
15 StoreBlindBox(blindBox, rarity)
16 return blindBox
17 end function
18
19 function GetRarity(blindBox)
20 return StoreBlindBox[blindBox]
21 end function

❶

❷

❸

Figure 2: Pseudocode representation of the two core func-
tions within the vulnerable BlindBox, the victim contract,
susceptible to PUA attacks. ❶ The“MintNFT” function accepts
parameters (from, target, amount), where ‘from’ denotes the user
address, ‘target’ represents the address receiving the NFT token,
and ‘amount’ specifies the number of tokens transferred.“MintNFT”
processes a transfer of one token from a user, ❷ employs random
numbers to ascertain the rarity of the newly minted NFT, and ❸
transfers the NFT to the intended recipient. The “GetRarity” function
retrieves the rarity of a specific NFT. Note that the GAS in the code
is a dummy token utilized solely for contract demonstration, and it
is also used as the unit of transaction fee.

how these PUAs exploit vulnerable contracts, we create a
representative BlindBox contract as an illustrative example.

A. A Victim Contract - BlindBox Contract.

Figure 2 presents the pseudocode of a BlindBox con-
tract designed to demonstrate the effects of various PUA
approaches. This contract allows users to deposit a token, mint
a corresponding NFT, and transfer it to a specified recipient.
The rarity of the NFT depends on a random number acquired
during run-time through the “GetRandom” function. The “Crit-
ical Operation” in the code block ❶ represents a user who
submits a one token bid for an NFT. The random number in ❷
determines the rarity of the minted NFT, while ❸ transfers the
minted NFT to the designated address. Adversaries exploit this
contract by reversing the deposit operation in ❶ if the minted
blind box does not have a high rarity. This action contradicts
the nonrefundable and nonexchangeable principles inherent in
the blind box mechanism.

B. Contract PUA.

The functionality of smart contracts is significantly en-
hanced by their interoperability, which allows a single transac-
tion to invoke multiple smart contracts through interoperation.
Transactions are atomic, meaning that if any of the contracts
involved in a transaction fails and reverts, all other executed
contract calls will also be rolled back [97]. Attackers can
exploit this interoperability by deploying a malicious contract

1 function ContractPUA(user)
2 blindBox = call NFT.MintNFT with (user, 1)
3 rarity = call NFT.GetRarity with (blindBox)
4 if rarity == 0 then
5 call revert();
6 end
7 return true
8 end function

❹

❺

Figure 3: Pseudocode representation of the Contract PUA
malicious contract. NFT represents the BlindBox contract.

beforehand and invoking the victim contract within the ma-
licious contract. The malicious contract then examines the
results of the execution of the victim contract [14], [70].
Figure 3 presents the pseudocode of the malicious contract,
which includes a method named “ContractPUA” that initiates
the PUA. In line 2, the “MintNFT” method of the victim
contract is called, and in line 3, the rarity of the minted
NFT token is retrieved and checked in the code block ❺.
The attacker invokes the victim contract in ❹, calling the
“MintNFT” method of the BlindBox contract and minting an
NFT with a random rarity. The attack contract then verifies the
result against their expectations in ❺. If the minted NFT token
is not considered rare, the attacker can deliberately reverse
execution, undoing Critical Operation ( ❶ in Figure 2).
Contract PUA differs from the pre-computation attack, as it
does not compute random numbers.

C. Fallback PUA.

The fallback function is a default mechanism in smart
contracts that is executed when receiving a transaction without
a specified function call or if the requested function does not
exist [14]. This feature allows contracts to handle unexpected
scenarios or implement custom logic for incoming transactions
[70]. Attackers may exploit the fallback function to target
victim contracts in the following way. By creating a malicious
contract with a strategically designed fallback function, the at-
tacker can influence the behavior of the victim contract during
interactions with the malicious contract [55]. Consequently,
the attacker can utilize the fallback function to verify the
execution result of the target contract and potentially alter or
reverse the intended outcome of the contract. This attack is
known as a fallback PUA. Figure 4 illustrates a fallback PUA
contract. If the “target” address in code block ❸ of Figure 2
matches the address of the malicious contract, the malicious
contract is invoked when executing❸. The malicious contract
can then assess the rarity of NFT in ❻ [64]. By exploiting the
fallback function mechanism, attackers can launch attacks that
interfere with the standard operation of the victim contract and
compromise its security [80].

D. Fee-based PUA.

Transaction fees play a crucial role in incentivizing valida-
tors or miners to maintain the blockchain network. Attackers
who cannot directly verify state changes may exploit fee-
based side channels to execute PUAs without interacting with
the targeted contracts. This strategy is called a fee-based
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1 function Fallback(from, amount, object)
2 rarity = call NFT.GetRarity with (blindBox)
3 if rarity == 0 then
4 call revert();
5 end
6 return true
7 end function

❻

Figure 4: Pseudocode representation of a Fallback PUA con-
tract. NFT represents the vulnerable BlindBox contract.

1 function MintNFT(from, target, amount)
2 CheckWitness(from)
3 Require(amount == 1)
4 Transfer(from, this, amount)
5 rarity = GetRandom(1) % 2
6 if (rarity == 1){
7 // Cost 0.5 GAS
8 blindBox = RareBlindBox(target, rarity)
9 }else{

10 // Cost 0.6 GAS
11 // revert if fee insufficient
12 blindBox = CommonBlindBox(target, rarity)
13 }
14 Mint(target, blindBox)
15 Transfer(this, target, 1, {blindBox})
16 StoreBlindBox(blindBox, rarity)
17 return blindBox
18 end function

❼

❽

Figure 5: Pseudocode representation of a Fee PUA.The code
block in ❼ consumes an additional 0.5 GAS, while ❽ consumes an
additional 0.6 GAS. ❼ and ❽ are marked as ❷ in Figure 2.

PUA. Figure 5 illustrates an example of fee-based PUA. As
mentioned above, the “MintNFT” function is a function of the
BlindBox contract. Line 6 of the code examines the rarity,
which is determined by a random number. If the rarity is
1, the code proceeds to ❼, creating a rare blind box and
incurring a transaction fee of 0.5 GAS. Otherwise, it moves
to ❽, generating a common blind box at the cost of 0.6 GAS.
If the attacker is aware of the gas costs for both paths and
intends to revert Critical Operation when ❼ is selected, they
can set the maximum transaction fee to a higher value, which
is sufficient for executing ❼, but lower than the cost of ❽.
Identifying fee-based PUAs is substantially more challenging
compared to other PUA categories.

These three prevalent PUAs mentioned above are prevalent
in many smart contract platforms and fundamentally arise
from the core design principles of blockchain and smart
contracts [14], [80], [97]. These principles comprise interop-
erability, fallback mechanisms, and gas fees, which are crucial
components of the smart contract ecosystem [80]. Apart from
these generalized PUAs, a distinct PUA is identified, specifi-
cally unique to script-based smart contract platforms [40].

E. Script-based PUA.

In script platforms, transactions are represented as scripts
and executed within a virtual machine (e.g., Neo Virtual
Machine [75]). Attackers can exploit this feature by adding
additional checking logic in the malicious transaction script
after invoking a victim contract, to verify and manipulate

1 load "Blindbox Contract"
2 push amount
3 push target
4 push from
5 call "MintNFT" // push blindBox to the stack
6 call "GetRarity" //pop blindBox, push rarity
7 jmpz revert() // if rarity == 0, jump to revert()❾

Figure 6: Transaction script pseudocode representation of a
Script PUA. The code block ❾ is the attached verification logic.

N0 L 𝜎! r1, r2, …Execution

Beacon Request Randomness Request

N1 L 𝜎" Execution

N2 L 𝜎# Execution
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𝜎!"#
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Figure 7: High-level ΠBFTRAND description for beacon request
and for randomness request. L is the proposal from the leader
for some view v of round b. {σi} are the partial beacons,
whereas {σi} are the beacons aggregated by nodes, and σ is
the final beacon. {ri} are random numbers. Execution entails
running smart contracts with transaction inputs on a virtual
machine. We omit the corresponding subscripts relating to the
view v and round b in L, σi, σi and σ.

the execution results. Figure 6 presents the pseudocode for
a malicious transaction script. During the execution process,
the virtual machine (VM) first loads and runs the victim
contract (line 1), pushes the required parameters to the stack,
and subsequently calls the “MintNFT” method (line 5). This
method retrieves the parameters from the stack, processes
them, and pushes the resulting output back onto the stack.
After the “MintNFT” method has concluded, the script invokes
“GetRarity” (line 6), which accesses the NFT token from the
stack and pushes its rarity value. The script then examines
the rarity and if it is deemed unsatisfactory, the attacker
can intentionally reverse the transaction [61]. This attack
exemplifies the security concerns associated with script-based
smart contract platforms and emphasizes the importance of
implementing robust security measures while developing and
deploying smart contracts on these platforms.

V. BFTRAND PROTOCOL ΠBFTRAND

We introduce ΠBFTRAND, an instantiation of BFTRAND,
specifically crafted for BFT-based consensuses. It can also be
adapted for various BFT-style consensus blockchain systems.
As illustrated in Figure 7, it functions in two primary stages:
the beacon request phase, responsible for generating the block
beacon, and the randomness request phase, providing random
numbers for smart contracts.

We assume the existence of an efficient pseudo-random
function PRF. Let PRF be an efficient keyed function family,
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PRF : {K × X → Y}, where K,X and Y are indexed with a
security parameter λ. For a function Fk in PRF where its key
k is uniformly chosen from K, the following holds for any
probabilistic polynomial-time (PPT) adversary A,∣∣∣Pr[AFk(·) = 1]− Pr[Af(·) = 1]

∣∣∣ ≤ negl(λ), (1)

where f(·) is a function uniformly chosen from the functions
mapping from X to Y . Looking ahead, we denote X as Ran,
while Y as Ran′ in our construction.

A. Beacon Request

We adopt the DRB scheme from [53] in our beacon request
protocol. Although integrating the DRB directly into the
consensus process to generate a beacon for each block appears
straightforward, our analysis identifies a significant semantic
gap between DRB and consensus. Without careful design,
the system would be vulnerable to random number attacks,
potentially compromising the security properties of both DRB
and consensus and degrading consensus performance. The
primary challenges identified are as follows.

First, the beacon must be produced at precisely controlled
times to avoid exploitation. Second, the threshold of DRB
differs from the Byzantine tolerance of the consensus and
has distinct security assumptions. Improper initialization could
result in validator collusion attacks or DoS attacks. Third, the
DRB and consensus operate in separate rounds, and their direct
integration could lead to precomputation or replay attacks.

1) Semantic Gap between DRB and Consensus: BFTRAND
is designed upon PBFT, and it requires seamless integration
with DRB. To achieve this, the generation of beacons from
DRB must be completed before the Finalize phase of PBFT to
prevent any disruption of the consensus process. Additionally,
the aggregated beacon should be broadcast along with the
commit message. During the Prepare phase, the PBFT leader
must also utilize DRB to generate the partial beacon and
broadcast it with the message “prepare”. The other consensus
nodes generate their partial beacons during the Response phase
and transmit them with the response message. Failure to follow
these phases will introduce additional consensus phases, com-
promising the overall performance of the consensus process.

2) Semantic Gap between k and t: The DRB generates a
random beacon by aggregating no less than k authenticated
partial beacons. To align threshold k in DRB with the Byzan-
tine fault tolerance assumption of PBFT, we need to carefully
choose the range of k. First, k must exceed the maximum
PBFT Byzantine tolerance t, otherwise, attacker A could
prematurely aggregate the beacon, leading to pre-computation
attacks. Furthermore, k must not exceed 2t + 1, otherwise,
DRB.Comb would require the cooperation of Byzantine nodes
and potentially cause DoS attacks.

3) Semantic Gap between DRB Round and Consensus
Round: DRB operates in rounds rn, producing a random
beacon for each. Therefore the UpdateState of DRB (Sec-
tion II-B) is also related to rn and runs every time a new
round starts to get a new state. Meanwhile, PBFT operates
on consensus round b. RNP requires only one random beacon

per consensus round. A straightforward approach might assign
the consensus round b as the DRB round rn. However, such
integration introduces potential security risks due to the multi-
view nature of PBFT, and causing different views in the
same consensus round having the same input parameters for
UpdateState and get the same states.

Specifically, PBFT will switch to a new view in the
same consensus round if it fails in the current view. There-
fore, if one sets rn as b, then view v has state: stb,vb =

UpdateState(stb−1, σ
b, πb, pk), view v+1 has state: stb,v+1

b =
UpdateState(stb−1, σ

b, πb, pk). Since the parameters of Up-
dateState for both view v and view v + 1 are exactly the
same, we have the same state for different views, that is,
stb,vb = stb,v+1

b , resulting in beacon leakage and replay attacks.
Therefore, if the prior consensus changes the view at or after
the PBFT Commit phase, the attacker A can compute the
random beacon before the new view begins.
Adapt UpdateState for BFTRAND: Because of the potential
vulnerability caused by the semantic gap between DRB round
and consensus round, we modify the definition of UpdateState
to make it related to both consensus round b and view v.
Specifically, instead of directly assigning rn as b, we combine
b and v to generate a unique rn. In the meanwhile, the adapted
UpdateState should follow the same security requirement of
state uniqueness as defined in Section II-B. This is achieved
by concatenating b and v or using a function that maps
the tuple (b, v) to a unique integer value. Consequently, the
adapted UpdateState for the (b, v)-th round is of the form:
UpdateState(stb−1,⊥,⊥, pk) : st← σb−1 ∥ b− 1 when v =
0, and UpdateState(stb,v−1,⊥,⊥, pk) : st← stb,v−1 ∥ b ∥ v,
otherwise. And stb−1 is the state in the consensus round b−1
used to generate the random beacon, while stb,v−1 is the state
of view v − 1 in the same round b. Since there is only one
{b, v} pair for each view, state uniqueness can be fulfilled.

We would like to highlight that UpdateState will be run at
the beginning of a consensus round or after a view change.
A failed view v in the PBFT consensus round b will result
in a change of view and a new view of v + 1 will be
generated in the same consensus round b. Then UpdateState
will be run to generate a new state for this new view:
stb,v+1 ← stb,v ∥ b ∥ v + 1. Since every view has a unique
(v, b) pair, UpdateState will generate different states for two
distinct views, and therefore generate different beacons.

With the UpdateState defined above, a node will generate
different partial beacons for different views thus ensuring
that each view has a distinct DRB number, preventing pre-
computation and replay attacks targeting beacon generation.
This approach allows for the secure integration of DRB into
the PBFT consensus process while maintaining the desirable
security properties of both schemes.

B. Randomness Request

Using the beacon as a source of random numbers in smart
contracts introduces security risks. It is possible for different
transactions to receive the same random numbers, which
makes the system vulnerable to duplicate transaction replay
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Input Validation-based Detection (IVD) (SC, T , σ)

For simplicity, we use the name of the
contract as the contract address and abstract
invoking function of SC as invoking SC:

1if ({SC, T } ≠⊥) {
2 // Minimum transaction fee
3 // and maximum script size from SC
4 ($Gmin, Smax)←− SC;
5
6 ($gmax, S)←− T
7 // Fee PUA Detected
8 if ($Gmin ≤ $gmax) Revert();
9 // Script PUA Detected

10 if (Smax ≥ |S|) Revert()t;
11 // Acquire the entry script
12 // from the virtual machine
13 SCentry ←− EntryScriptFromVM;
14 // Contract PUA Detected
15 if (SCentry ̸= S) Revert();
16} else {
17 // Get the script from the blockchain
18 S ←− GetContract(Addr)
19 // Fallback PUA Detected
20 if (S ̸=⊥) Revert();
21}

Figure 8: Input Validation-based Detection (IVD) to mitigate
PUAs.

attacks. Adversaries can exploit this vulnerability by flooding
the system with numerous transactions within the same block.
Furthermore, if on-chain data is utilized to process the beacon,
attackers could potentially precompute random numbers and
incorporate them into their attack contracts, leading to pre-
computation attacks. Even if random numbers are generated
securely, generating the same random numbers for multiple
requests in a single transaction would expose the system to
pr-computation attacks.

To mitigate these concerns, BFTRAND.Request employs a
pseudo-random function (PRF) to convert the beacon into
multiple unique and unpredictable random numbers. We use
the transaction hash as an identifier to ensure that transactions
receive distinct random numbers and enter these numbers into
the PRF. To prevent attackers from precomputing random
numbers, the “GetRandom” function is designed to return dif-
ferent random numbers each time it is called. This is achieved
by incorporating a global counter c as input, guaranteeing that
each new request for random numbers has a unique input and
produces a different output.

C. Mitigating PUAs

Ensuring secure RNP in BFTRAND requires addressing
PUAs. We propose Input Validation-Based Detection (IVD)
as a means to counter PUAs without compromising transac-
tion atomicity. In order to reduce alterations to the existing
blockchain platform, we have developed IVD as a smart con-
tract function that users can invoke and implement within their

smart contracts. IVD operates prior to the contract retrieving
a random number, thereby identifying possible PUA attacks.

The IVD method uses existing smart contract regulations to
authenticate user input, identify, and mitigate potential attacks.
By individually examining each potential entry point for a
PUA, the IVD approach ensures thoroughness in addressing
security vulnerabilities. Furthermore, IVD maintains transac-
tion atomicity by adhering to unaltered contract rules, making
it extremely difficult for adversaries to exploit or bypass the
IVD detection mechanism. Adversaries would need to create
an entirely new PUA to circumvent the system, which poses
a formidable challenge.

Figure 8 illustrates the IVD function against Contract,
Fallback, Fee, and Script PUAs. The IVD function takes two
parameters: {SC, T }, which represent the victim contract SC
and the invocation of the transaction T , and addr, the intended
interaction address for the victim contract. If {SC, T } is not
empty on line 1, IVD proceeds to PUA script, contract, and
fee detection. At Line 4, two contract variables, $Gmin and
Smax, established during development, are retrieved. $Gmin

represents the minimum transaction fee required to cover all
execution paths, while Smax indicates the maximum allowed
transaction script size, which prevents appending the verifica-
tion script. At Line 6, the maximum transaction fee $gmax and
the transaction script S are extracted from the parameters. At
line 8, IVD ensures the absence of fee PUA issues by verifying
that the transaction fee is sufficient. At Line 10, Script PUA
threats are checked by comparing the transaction size to the
contract’s maximum script size. If either check fails, IVD is
reverted. Otherwise, IVD verifies direct transaction initiation
of contract execution by obtaining the execution’s entry script
from the virtual machine at Line 13. If the acquired entry script
and the transaction script are not identical, IVD is reverted.
At Line 18, IVD retrieves the contract script for addr from
the blockchain. If the loaded script is nonempty, indicating a
contract account and potential Fallback PUA, IVD is reverted.

VI. SECURITY ANALYSIS OF BFTRAND PROTOCOL

In this section, we provide a brief security analysis of
the BFTRAND protocol, focusing on the four requirements
(§III-C). The formal proofs can be found in the full version [9].

Theorem VI.1 (Pseudorandomness). If the underlying DRB
is (f, k, n)-secure with f ≤ t < k ≤ 2t + 1, and PRF is a
pseudorandom function, then BFTRAND satisfies pseudoran-
domness.

Proof Sketch. This property follows directly from the pseudo-
randomness (i.e., the standard pseudorandomness described in
[53]) of the underlying DRB protocol and PRF. Specifically,
since the random beacons generated by DRB and the output
from PRF are pseudorandom, the resulting random numbers
are also pseudorandom. See the full proof in [9].

Theorem VI.2 (Uniqueness). BFTRAND satisfies uniqueness
if PBFT is (f, t, n) secure, DRB is (f, k, n) secure, with f ≤
t < k ≤ 2t+ 1, and PRF is a pseudorandom function.
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Proof Sketch. If PBFT is secure, then the adversary can
control at most f nodes, as guaranteed by the underlying
PBFT scheme, and this controlled number is less than the
threshold defined in the DRB protocol, the adversary cannot
generate valid random beacons at will, which is ensured by
the uniqueness of the underlying DRB scheme. Furthermore,
since the round number is determined by the block and
view, only one predetermined beacon related to the block
and view will be generated for each block. Additionally, as
PRF is a deterministic algorithm, it guarantees that it can
only produce the same result with the same inputs and that
each random number generated from PRF has a different
input. Consequently, as long as PBFT is secure, every random
number generated for smart contracts is unique. The full proof
can be found in [9].

Theorem VI.3 (Availability). BFTRAND satisfies availability
if PBFT is (f, t, n) secure, DRB is (f, k, n) secure and achieves
uniqueness, for any f with f ≤ t < k ≤ 2t+ 1.

Proof Sketch. As BFTRAND receives at least 2t+1 beacons in
the Finalize phase generated by different nodes, the beacon can
be confirmed only if a value appears over t times. Following
the uniqueness of DRB, the honest nodes generate the same
beacons; hence, the honest nodes of BFTRAND can always
output a valid beacon, even in the faulty nodes. Therefore,
BFTRAND achieves availability. See the full proof in [9].

Theorem VI.4 (Irreversibility). BFTRAND achieves Irre-
versibility.

Proof Sketch. BFTRAND verifies whether the contract is
directly invoked by a transaction (Contract PUA), whether
the interacting address is a contract account (Fallback PUA),
whether there are adequate fees to cover all execution flows
(Fee PUA), and whether there are additional transaction scripts
(Script PUA). By eliminating and checking all conceivable
methods for state detection and execution reverting at runtime,
it ensures that user contracts execution cannot be maliciously
reverted. Thus, Irreversibility is achieved. See the full proof
in [9].

VII. IMPLEMENTATION AND EVALUATION

We have developed a prototype of BFTRAND using the
Delegated Byzantine Fault Tolerant (dBFT) consensus algo-
rithm [75], which is an optimized variant of PBFT [33] and is
being adopted by many famous blockchain projects [13], [52],
[69], [75]. We set its block time to 15 seconds. Since dBFT
is a standard variation of PBFT, the protocols of dBFT can be
adapted to other BFT platforms. In our implementation, we
integrated BFTRAND into dBFT by modifying the messages
in the classic phases, while preserving the original consensus
function (§V-A). For the prototype DRB protocol BFTRAND,
we instantiated the Boneh-Lynn-Shacham (BLS) threshold-
based Dfinity-DRB [53], [57]. We use the neo virtual machine
as the dApp execution environment, which can execute smart
contracts that are implemented with C#.

To evaluate BFTRAND, we implemented four applica-
tions: 1) Fair NFT Distribution Application: We migrate the
Loot [81] token distribution contract to nvm, where each bag
is assigned a random rarity when users claim Loot tokens; 2)
Multiple Random Number Request Application: We reimple-
mented Neoverse [78] to generate multiple random values in a
single transaction, allowing users to open multiple Blind Boxes
simultaneously; 3) Fair Gaming Outcome Application: We
developed a rock-paper-scissor contract that enables users to
participate in prize giveaways with random and fair outcomes;
4) Performance Comparison Application: We designed an
application to compare the performance of commit-execute
random number generation solutions with BFTRAND.

Furthermore, we also compared BFTRAND with other RNP
solutions. However, to the best of our knowledge, BFTRAND
is the first one-round RNP solution. Since existing schemes
deploy the commit-and-execute framework, they are all two-
round based. Therefore, we compare BFTRAND with two-
round protocols in our experiments. To ensure a fair evaluation
and comparison, we introduced BFTRANDcommit−execute,
a variant of our protocol that adheres to this traditional
two-round approach, serving as a bridge for comparison
with current two-round schemes. Specifically, we compare
our protocol with existing commit-and-execute-based ones in
terms of blockchain storage overhead, GAS fees, and latency.
Furthermore, our comparison also extends to Chainlink VRF
[34], a widely recognized and leading standard in random
number generation solutions for smart contracts, utilized by
over 772 projects [46]. BFTRAND is evaluated using a quad-
core 3.6 GHz Intel(R) E3-1275 v5 CPU [59] and 32 GB of
memory. The operating system used was Ubuntu 20.04 LTS
with the Linux kernel version 5.4.0-91-generic, and the SDK
version was .NET 6.0.1. The lines of code for different parts
of BFTRAND can be found in the full version [9].

A. Application Transaction Cost.

Table I summarizes the transaction costs of running the
developed applications. In nvm, the network fee is proportional
to the length of the transaction script, while the OpCodes
determine the system fee that a transaction executes. GAS
is the token in nvm that pays the transaction fee. Currently,
one GAS costs $2.22, and $1 buys 0.45 GAS. Loot::tokenURI
provides a token with a randomly determined rarity to the
user. Neoverse::UnBoxing purchases and opens one blind box,
and Neoverse::BulkUnBoxing purchases and opens five blind
boxes. RPS::Play produces a random shape and compares it
with the one provided by the user. This evaluation demon-
strates that smart contracts can conduct random number-related
operations inexpensively with one single transaction.

B. Transaction Fee Cost.

We compared the fees for requesting and providing random
numbers between BFTRAND and BFTRANDcommit-execute.
The implementation of generating multiple random numbers
within BFTRANDcommit-execute is carried out in C# on
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Table I: Applications Transaction Fee (GAS/$).

Method Network Fee System Fee

Loot::tokenURI 0.00593250/0.013 0.20694257/0.459
Neoverse::UnBoxing 0.00119552/0.002 0.07313472/0.162
Neoverse::BulkUnBoxing 0.00125752/0.002 0.36183988/0.803
RPS::Play 0.00616260/0.013 0.06588677/0.146
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Figure 9: GAS cost when calling GetRandom. The left y-axis
is the total GAS consumption, while the right y-axis is the GAS cost
ratio R = (Commit+ Execute)/Runtime.

the VRF-based Chainlink platform1. The evaluation result is
shown in Figure 9.

From the results, we observed that BFTRAND costs
0.00169291 GAS ($0.037), which is only 11% of the cost of is-
suing a random number request for BFTRANDcommit-execute

(0.01516372 GAS, $0.033). If each transaction requests
ten random numbers, then BFTRAND saves 91.6% GAS
(0.05088786 GAS, $0.113). BFTRAND saves a considerable
amount of transaction fees since BFTRANDcommit-execute

needs 2 transactions, Commit and Execute, to complete
one request. Execute needs to verify the fairness of the
beacon and extend the beacon to random numbers in smart
contracts through the virtual machine, which is expensive
and inefficient. In contrast, BFTRAND can generate random
numbers in the native environment and guarantee the fairness
of the beacon through consensus.

GAS Cost of Irreversibility Check. The cost to ensure
irreversibility with IVD is less than 0.00001 GAS ($0.00002),
which is negligible compared to the transaction cost.

C. Blockchain Overhead.

To evaluate the impact of RNP on the blockchain ledger,
we define the size of the data that must be written on the
blockchain to complete a request for random numbers as
blockchain overhead (BO). Since Chainlink VRF [34] is one of
the most influential RNP solutions, we use it as a baseline. Let
the transaction size of Texecute be len. We evaluate the BO
with the transaction size Texecute len = 193 bytes (the size

1Chainlink VRF [35] is the most influential RNP solution, which has
processed approximately 8 million requests for random numbers for more
than 656 projects.
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Figure 11: BLS setup time cost in a testnet with 22 consensus
nodes. Note that BLS setup is separate to the consensus, it
will not slow down the consensus.

of a typical nvm transfer transaction) and len = 624 bytes2,
while Tcommit size is set as the nvm transaction size of 193
bytes. The BO for BFTRAND is 193 bytes, and the overhead
for BFTRANDcommit-execute is 193 + len. If len = 193 bytes,
then BFTRAND saves approximately 50% BO compared to
BFTRANDcommit-execute; If len = 624 bytes, BFTRAND
saves approximately 76.4% BO.

D. Evaluation on Beacon Request.

Since the adopted DRB exploits the BLS signature to gen-
erate the random beacon, we evaluated the aggregation time
of σ. Figure 10 shows the aggregation time on the logarithmic
scale under the k-out-of-n threshold mode, where the number
of BLS nodes is n, and we set k to ⌈(n+ 1)/2⌉. When there
are 7 consensus nodes (consistent with the neo-chain) and
k = 4, the time cost of aggregating the BLS signatures is
approximately 318 µs; when the number of consensus nodes
increases to 23 (comparable to 21 nodes in EOS), the time
cost is approximately 533 µs. Adding BFTRAND to dBFT
only incurs a negligible increase of 0.002% more time.

To evaluate the setup, we executed it on a private network
of 22 dBFT nodes deployed on Azure. Azure nodes utilized
Intel (R) Xeon (R) Platinum 8272CL CPU 2.6 GHz with

2The size of a commit-execute transaction in Chainlink VRF [49], which
includes the random number, proof, contract addresses, accounts, and other
required parameters that cannot be ignored to verify the security properties
of the random number generated from the blockchain.
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Ubuntu18.04.6 LTS. The time to live (ttl) between the nodes
was approximately 57 ms. The evaluation results are depicted
in Figure 11 with 2, 000 setups. More than half of the setups
were completed in 5 seconds, with some cases (e.g. 15%)
taking more than 10 seconds. This longer setup time is
mainly influenced by the communication cost associated with
collecting messages from all participants. Because the setup
operation is independent of consensus and is only performed
when the consensus committee requires an update and is
separate from the consensus, execution of the setup does not
impose overhead on the consensus layer.

E. RNP Solutions Comparison.

In Table II, we provide a comparison of BFTRAND with
various projects related to the generation of random numbers.
This includes beacon protocols [19], [31], [36], [56], [93],
[93], blockchain projects with embedded random number
protocols [2], [21]–[24], and oracles [35], [76].

1) Platform consensus: According to the table, the majority
of the protocols in the comparison are based on the BFT
consensus. This is because in order to generate random values
in a distributed environment, the nodes must communicate
interactively to establish consensus. Chainlink VRF, being an
oracle, is platform independent and provides randomness for
both BFT-based blockchains [28] and Proof-of-Work (PoW)
based blockchains [49]. Automata [76] is a blockchain mid-
dleware specifically designed for Ethereum. As BFTRAND is
built on top of the consensus algorithm PBFT, it can be easily
adapted to any blockchain project that utilizes variants PBFT
as its underlying consensus algorithm.

2) Method: To prevent a faulty node from obstructing the
provision of random numbers, HDrand, RandRiper, Dfinity,
Elrond and BFTRAND use distributed random beacon (DRB)
protocols to generate random numbers. On the other hand,
Klaytn and Harmony use verifiable random functions to ensure
that the system generates deterministic random values. In
addition to threshold signatures and verifiable random func-
tions, several projects such as Secret, Chainlink VRF, and
Automata use Trusted Execution Environments (TEE) [7],
[11], [73], which are hardware-protected isolated execution
environments, to generate random values in a secure and
unbiased manner. The usage of TEE requires operating on
devices that support TEE.

3) Comparing the number of random numbers: We com-
pare the ability of random number generators (RNPs) to
generate random numbers. Random beacon projects such as
RandHerd, RandHound, and BRandRiper focus solely on
beacon generation, limiting the available random value to the
number of beacons σ. On the other hand, Secret and Elrond
provide built-in pseudorandom functions that can generate
numerous random numbers by expanding σ. However, the
random value they can supply is only upper bound by the
consensus (e.g., GAS limit), represented as ∞. In the case of
BFTRAND, random numbers are generated using a pseudoran-
dom function (PRF) of the consensus-based beacon. Therefore,

the number of random numbers generated by BFTRAND is
also constrained by consensus, such as the transaction fee.

4) Examining latency: None of the random number gen-
erators used by random beacon or blockchain projects can
generate random values within a single consensus round
due to vulnerabilities to random number attacks. However,
Automata [76] is the only one capable of providing run-time
random numbers to smart contracts. It is a trusted third-party
middleware solution for the Ethereum Virtual Machine (EVM)
platform. It generates random numbers in a Trusted Execution
Environment (TEE) through Verifiable Random Functions
(VRF) and uses Ethereum EIP712 [86] to encapsulate a
user transaction and its requested random numbers within an
EIP712 transaction.

While Automata is theoretically vulnerable to PUA, it is
highly improbable in practice due to its closed solution nature,
operating exclusively on its own services like NFTFair. In
contrast, BFTRAND is an RNP solution specifically designed
for BFT-based open blockchain platforms, free of the reliance
on specialized hardware and trusted third parties.

5) Limitations of BFTRAND: Unlike the existing commit-
and-execute solutions that are consensus agnostic and compat-
ible with various blockchain platforms, BFTRand is specifi-
cally tailored for BFT-based platforms. Due to the fundamental
differences between BFT consensus mechanisms and other
consensus types such as PoW [74] and PoS [48], BFTRand
cannot be directly implemented on blockchain platforms that
utilize non-BFT consensus models.

We would like to highlight that BFTRAND is the first one-
round RNP solution designed for BFT platforms, which is
our main contribution. Existing schemes deploy the commit-
and-execute model, which is two-round based. Therefore,
BFTRAND stands out as the only secure runtime random
number provider for BFT-based blockchains.

VIII. RELATED WORK

In this section, we provide a concise overview of the existing
literature on the provision of random numbers in blockchain
systems, highlighting their limitations and vulnerabilities.
On-Chain RNPs and Commit-execute RNPs: On-chain RNP
approaches utilize blockchain data as entropy sources [29],
while commit-execute schemes involve a two-phase process
[2], [31], [62]. However, both methods have limitations, such
as susceptibility to manipulation, prediction attacks [27], [41],
[94], increased latency, and storage overhead [34], [51], [84].
Distributed Random Beacons and Smart Contract RNPs: The
DRB protocols are designed to generate random numbers in
a secure and decentralized manner [2], [21], [45]. Various
studies on random beacons utilize different cryptographic
primitives and threat models [18], [31], [54], [56], [62], [88],
[89]. Some projects rely on homomorphic encryption [36],
[79], while others operate in a permission-less setting [1], [4],
[21], [24], [35], [44], [45], [50], [65]. While DRBs have made
significant advancements in efficiently and securely generating
random numbers, they are not explicitly designed as RNP
solutions for smart contracts. Thus, they must be combined
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Table II: Comparison of RNPs for blockchain.

Protocol Platform Consensus Method(s) Resistance (t) # random values (r)
Latency

(Consensus round)

Drand [31] PABFT Threshold SecretBLS t < n/2 O(σ) ≥ 2
HERB [36] ∅ Threshold ElGamal t < n/3 O(σ) ≥ 2
RandChain [56] Sequential PoW PoW t < n/3 O(σ) ≥ 2
RandHerd [93] BFT Threshold Schnorr t < n/3 O(σ) ≥ 2
RandHound [93] BFT Client based, PVSS t < n/3 O(σ) ≥ 2
BRandRiper [19] BFT VSS, q-SDH t < n/2 O(σ) ≥ 2

Dfinity [2] BFT Threshold BLS t < n/2 ∞ ≥ 2
Secret [24] DPoS Scrt-RNG,TEE t < n/2 ∞ ≥ 2
Elrond [21] Secure PoS BLS,onchain data t < n/3 ∞ ≥ 2
Klaytn [23] Istanbul BFT VRF t < n/3 O(σ) ≥ 2
Harmoney [22] Fast BFT VRF,VDF t < n/3 O(σ) ≥ 2
⋆Chainlink VRF [35] ∅ VRF, TEE t < n/2 O(σ) ≥ 2
⋆Automata [76] ∅ VRF, TEE t < n/2 ∞ 1

BFTRANDcommit−execute BFT ∅ t < n/3 O(σ) ≥ 2
BFTRAND BFT Threshold BLS t < n/3 ∞ 1§

In the table, n denotes the number of consensus nodes, t is the maximum number of Byzantine nodes allowed in the system, and σ denotes the beacon.
Resistance refers to the tolerance of the system for Byzantine faults. ⋆ is the off-chain third-party Oracle RNP. ∞ means the number of random numbers is

upper-bounded by consensus. §BFTRAND is the first smart contract solution in runtime RNP on a BFT-based blockchain.

with the commit-execute scheme to provide randomness. How-
ever, the integration of DRB protocols with smart contracts at
runtime presents unique security challenges.
Hardware RNPs and BFT Blockchain Projects: Hardware-
based methods, such as ASIC-based VDF [25] and TEE-based
oracles in Chainlink VRF [35] and Secret [24], rely on specific
hardware. CoRNG [20] uses the shared memory to generate
random numbers. Several BFT blockchain projects have also
been developed [5], [22], [23], [47], [58], [77], [82], [83],
[91]. BFTRAND has the potential to be integrated into these
projects and is hardware-independent.

IX. CONCLUSION AND DISCUSSION

Conclusion. Ensuring reliable randomness for smart con-
tracts is a crucial aspect of various blockchain operations.
Many decentralized applications heavily rely on randomness
to achieve utility and security. However, existing commit-
execute random number provider protocols face challenges
such as high costs on-chain and delayed processing times. To
address these issues, this study introduces BFTRAND, a novel
low-latency Random Number Protocol specifically designed
for smart contracts on Byzantine Fault-Tolerant (BFT)-based
blockchains. The proposed protocol, BFTRAND, is referred to
as low latency due to its ability to securely provide random
numbers using a single round of consensus, as opposed to
the two rounds required by commit-execute RNPs. To assess
its performance, we implemented a prototype of BFTRAND
using a distributed random beacon protocol and seamlessly
integrated it into the consensus layer without compromising
efficiency. Furthermore, BFTRAND has been rigorously tested
and proven secure against random number attacks. Further-
more, we identify various types of post-reveal Undo Attacks
and propose effective mitigation strategies to improve the
security of BFTRAND. Consequently, BFTRAND is the first
of its kind for blockchains, providing a secure, reliable, and
efficient random number provider function.

Discussion. BFTRAND is specifically designed for smart
contracts on blockchain platforms, integrating Beacon Re-
quests, Randomness Requests, and detection mechanisms tai-
lored to this environment. However, some aspects of BF-
TRAND, such as the Beacon and Randomness Requests de-
signed for BFT-based platforms, can be extended to other sys-
tems using (variants of) BFT consensus. The detection mech-
anisms are only applicable to smart contracts. Specifically,
the core of BFTRAND is integrated within the BFT-based
consensus process, enabling its application in systems that
utilize BFT consensus. Nonetheless, the unique requirements
for randomness in blockchain smart contracts, coupled with the
specific challenges of pre-computing and Miner Extractable
Value (MEV) attacks [92], necessitate specialized detection
mechanisms. These attacks, inherent to the blockchain’s dis-
tributed and transparent nature, endanger the integrity of
randomness, making our detection mechanisms particularly
suited for on-chain smart contracts or related applications. This
specificity is due to the blockchain’s visibility in the random
number generation process, which does not generally apply
outside of this context.
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in the wild. arXiv preprint arXiv:1707.01873, 2017.

[33] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.
In OsDI, volume 99, pages 173–186, 1999.

[34] chain.link. https://chain.link/. https://chain.link/. accessed: 2020-08-18.
[35] Chainlink. Get a random number. https://docs.chain.link/docs/

get-a-random-number/, 2021.
[36] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. Homomorphic

encryption random beacon. Cryptology ePrint Archive, 2019.
[37] Usman W Chohan. Non-fungible tokens: Blockchains, scarcity, and

value. Critical Blockchain Research Initiative (CBRI) Working Papers,
2021.

[38] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin,
and Mirco Marchetti. Making byzantine fault tolerant systems tolerate
byzantine faults. In NSDI, volume 9, pages 153–168, 2009.

[39] coinmarketcap.com. Today’s cryptocurrency prices by market cap. https:
//coinmarketcap.com/, March 2022.

[40] Mauro Conti, Divya Diwaker, Sankardas Roy, and Radha Poovendran.
A survey on blockchain: Techniques, applications, and performance
evaluation. IEEE Communications Surveys & Tutorials, 21(4):2678–
2716, 2019.

[41] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash boys 2.0:
Frontrunning, transaction reordering, and consensus instability in de-
centralized exchanges. arXiv preprint arXiv:1904.05234, 2019.

[42] DAMIEN. Hackers targeted eosbet dapp, $200k worth of eos stolen,
2018.

[43] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. Spurt:
Scalable distributed randomness beacon with transparent setup. In 2022
IEEE Symposium on Security and Privacy (SP), pages 2502–2517. IEEE,
2022.

[44] TRON Core Devs. Safe practice of tron solidity smart contracts:
Implement random numbers in the contracts, Mar 2020.

[45] Drand. Drand/drand: a distributed randomness beacon daemon - go
implementation. https://github.com/drand/drand.

[46] Chainlink Ecosystem. Chainlink ecosystem.
https://www.chainlinkecosystem.com/ecosystem, 2022.

[47] EOSIO. Eosio website. https://eos.io/, November 2022.
[48] ethereum.org. Ethereum upgrades (formerly ’eth2’).

https://ethereum.org/en/upgrades/.
[49] Etherscan. Chainlink vrf. https://etherscan.io/address/

0x271682DEB8C4E0901D1a1550aD2e64D568E69909/, 2022.
[50] Fetch.ai. Launching our random number beacon on binance smart

chain. https://medium.com/fetch-ai/launching-our-random-number-
beacon-on-binance-smart-chain-8e3b7aa52be6, Oct 2020.

[51] Filecoin. Collaboration with the ethereum foun-
dation on vdfs. https://filecoin.io/blog/posts/
collaboration-with-the-ethereum-foundation-on-vdfs/, 2019.

[52] The Linux Foundation. Hyperledger fabric. https://www.hyperledger.
org/use/fabric, 2016.

[53] David Galindo, Jia Liu, Mihair Ordean, and Jin-Mann Wong. Fully
distributed verifiable random functions and their application to de-
centralised random beacons. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 88–102. IEEE, 2021.

[54] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin.
Secure distributed key generation for discrete-log based cryptosystems.
In International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 295–310. Springer, 1999.

[55] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic
framework for the security analysis of ethereum smart contracts. In
International Conference on Principles of Security and Trust, pages 243–
269. Springer, 2018.

13

https://xrpl.org/random.html
https://developer.algorand.org/docs/get-details/algorand_consensus/
https://developer.algorand.org/docs/get-details/algorand_consensus/
https://www.vdfalliance.org/news/open-vdf-asic-introduction
https://www.vdfalliance.org/news/open-vdf-asic-introduction
https://github.com/AMDESE/AMDSEV
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.diem.com/en-us/
https://docs.elrond.com/developers/developer-reference/random-numbers-in-smart-contracts/
https://docs.elrond.com/developers/developer-reference/random-numbers-in-smart-contracts/
https://docs.harmony.one/home/general/technology/randomness
https://docs.harmony.one/home/general/technology/randomness
https://docs.klaytn.com/klaytn/design/consensus-mechanism
https://docs.klaytn.com/klaytn/design/consensus-mechanism
https://docs.scrt.network/dev/developing-secret-contracts.html#randomness
https://docs.scrt.network/dev/developing-secret-contracts.html#randomness
https://bscscan.com/address/0x747973a5A2a4Ae1D3a8fDF5479f1514F65Db9C31#analytics
https://bscscan.com/address/0x747973a5A2a4Ae1D3a8fDF5479f1514F65Db9C31#analytics
https://chain.link/
https://docs.chain.link/docs/get-a-random-number/
https://docs.chain.link/docs/get-a-random-number/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://eos.io/
https://etherscan.io/address/0x271682DEB8C4E0901D1a1550aD2e64D568E69909/
https://etherscan.io/address/0x271682DEB8C4E0901D1a1550aD2e64D568E69909/
https://filecoin.io/blog/posts/collaboration-with-the-ethereum-foundation-on-vdfs/
https://filecoin.io/blog/posts/collaboration-with-the-ethereum-foundation-on-vdfs/
https://www.hyperledger.org/use/fabric
https://www.hyperledger.org/use/fabric


[56] Runchao Han, Jiangshan Yu, and Haoyu Lin. Randchain: Decentralised
randomness beacon from sequential proof-of-work. IACR Cryptol.
ePrint Arch., 2020:1033, 2020.

[57] Timo Hanke, Mahnush Movahedi, and Dominic Williams. Dfin-
ity technology overview series, consensus system. arXiv preprint
arXiv:1805.04548, 2018.

[58] helium.com. Helium documentation.
https://docs.helium.com/blockchain/consensus-protocol/, 2022.

[59] Intel. Intel® xeon® processor e3 v5 family. https:
//ark.intel.com/content/www/us/en/ark/products/88177/
intel-xeon-processor-e3-1275-v5-8m-cache-3-60-ghz.html, 2019-
12-3.

[60] Aljosha Judmayer, Nicholas Stifter, Philipp Schindler, and Edgar Weippl.
Estimating (miner) extractable value is hard, let’s go shopping! Cryp-
tology ePrint Archive, 2021.

[61] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus:
Analyzing safety of smart contracts. In Proceedings of the Network and
Distributed System Security Symposium (NDSS). Internet Society, 2018.

[62] John Kelsey, Luı́s TAN Brandão, Rene Peralta, and Harold Booth.
A reference for randomness beacons: Format and protocol version 2.
Technical report, National Institute of Standards and Technology, 2019.

[63] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 583–598. IEEE, 2018.

[64] Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek
Saxena. Exploiting the laws of order in smart contracts. In Proceedings
of the 28th USENIX Security Symposium, pages 1317–1334. USENIX
Association, 2019.

[65] Mikhail Krasnoselskii, Grigorii Melnikov, and Yury Yanovich. Dis-
tributed random number generator on hedera hashgraph. In 2020 the 3rd
International Conference on Blockchain Technology and Applications,
pages 7–11, 2020.

[66] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall,
1(11), 2014.

[67] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. In Concurrency: the works of leslie lamport, pages
203–226. 2019.

[68] Kfir Lev-Ari, Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi.
Fairledger: A fair blockchain protocol for financial institutions. arXiv
preprint arXiv:1906.03819, 2019.

[69] Ontology Foundation Ltd. Ontology. https://ont.io/, 2018.
[70] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas

Hobor. Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security,
pages 254–269. ACM, 2016.

[71] J-P Martin and Lorenzo Alvisi. Fast byzantine consensus. IEEE
Transactions on Dependable and Secure Computing, 3(3):202–215,
2006.

[72] Sky Mavis. Paid whitepaper. https://docsend.com/view/
jdbdpza9d9nehnf2, January 2021.

[73] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas,
Hisham Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. In-
novative instructions and software model for isolated execution. In
HASP@ISCA, page 10, 2013.

[74] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf, 2016.

[75] neo.org. Neo smart economy. https://neo.org/, 2022.
[76] Automata Network. Automata network. https://www.ata.network, 2021.
[77] THETA NETWORK. Theta network.

https://docs.thetatoken.org/docs/whitepapers.
[78] NGD. Neoverse, 2022.
[79] Thanh Nguyen-Van, Tuan Nguyen-Anh, Tien-Dat Le, Minh-Phuoc

Nguyen-Ho, Tuong Nguyen-Van, Nhat-Quang Le, and Khuong Nguyen-
An. Scalable distributed random number generation based on homomor-
phic encryption. In 2019 IEEE International Conference on Blockchain
(Blockchain), pages 572–579. IEEE, 2019.

[80] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. Finding the greedy, prodigal, and suicidal contracts at scale.
In Proceedings of the 34th Annual Computer Security Applications
Conference, pages 653–663. ACM, 2018.

[81] Loot Project. Loot contract source code. https://etherscan.io/address/
0xff9c1b15b16263c61d017ee9f65c50e4ae0113d7#code, 2021.

[82] The Celo Project. Celo randomness: Celo docs. https://docs.celo.org/
celo-codebase/protocol/identity/randomness.

[83] The Kadena Project. Kadena whitepaper. https://docs.kadena.io/basics/
whitepapers/overview.

[84] Youcai Qian. Randao: Verifiable random number generation, 2017.
[85] Mayank Raikwar and Danilo Gligoroski. Sok: Decentralized randomness

beacon protocols. arXiv preprint arXiv:2205.13333, 2022.
[86] Leonid Logvinov Remco Bloemen. Eip-712: Ethereum typed structured

data hashing and signing. https://eips.ethereum.org/EIPS/eip-712.
[87] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter,

and Edgar Weippl. Randrunner: Distributed randomness from trapdoor
vdfs with strong uniqueness. 2021.

[88] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl.
Hydrand: Efficient continuous distributed randomness. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 73–89. IEEE, 2020.
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