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Abstract—Security Information Event Management (SIEM)
systems are used to monitor large networks for malware
infestations, DDoS attacks, and many other types of net-
work intrusions. Typical SIEMs are centrally managed with
information flowing in from across the enterprise. In this
architecture, as the enterprise grows, the SIEM must also scale
proportionally. In our research we are working to create a Peer-
to-Peer distributed SIEM system to leverage the power of all
the devices in the network for monitoring. The system scales
naturally; as the enterprise grows, more devices come into the
peer-to-peer network (P2P). The added devices increase the
SIEM’s processing power and storage ability. A P2P SIEM
will drastically reduce upfront hardware costs and provide
an increased processing power for advanced analytics. In this
paper, we present Class-Chord which is a P2P network fabric
designed to support a P2P SIEM. We have modified the well
known Chord DHT to support efficient 1-n messaging that
is required to enable SIEM administrators to query subsets
of the network rather than flooding queries to all nodes.
Class-Chord uses a modified Chord ID and a new message
type that enables administrators to send messages to network
subsets using complex class matching specifiers. We analyze
theoretical models for the system and present experimental
results from a live system deployed across 300 physical nodes.
The results attest that Class-Chord is more efficient than
traditional communication mechanisms used in SIEM systems.
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I. OVERVIEW
A. Motivation

Security Information Event Management (SIEM) systems
are used to monitor large networks for malware infestations,
DDoS attacks, and many other types of network intrusions.
Typical SIEMs are centrally managed with information
flowing in from across the enterprise. Information comes
from all networked devices (end-user computers, routers,
webservers, DNS servers, and others). In this architecture, as
the enterprise grows, the SIEM must also scale proportion-
ally. A recent report from HP notes their SIEM infrastructure
includes 100s of archival databases and many instances of
the SIEM manager. The upfront cost reported for a large
enterprise SIEM is $3 to $5 million with additional yearly
maintenance fees [1].

In our research we are working to create a Peer-to-
Peer distributed SIEM system to leverage the power of
all the devices in the network for monitoring. The system
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scales naturally; as the enterprise grows, more devices come
into the peer-to-peer network (P2P). The added devices
increase the SIEM’s processing power and storage ability
proportionally. A P2P SIEM will drastically reduce upfront
hardware costs and provide a increased processing power
for advanced analytics.

Among the several challenges inherent in the creation
of a P2P SIEM, efficient message passing is of pivotal
importance. According to [1] first level network monitoring
personnel evaluate one to three thousand alerts per day.
In the P2P SIEM system administrators will investigate
network events by sending queries to individual nodes and
groups of P2P nodes. To implement the SIEM we must
create a peer-to-peer network architecture which supports
a small number of querying nodes sending queries to indi-
vidual nodes and large subsets of the monitored network.
For example, a subset may be "all Windows machines" or
"any server". These subsets need to be dynamic as security
monitoring personnel may pose various questions based on
the unfolding threat profile. Some example questions are:
"is file XYZ present on your disk?" or "what processes
are currently running?". The underlying message protocol
must provide a flexible fabric to ask any questions as
defined by the SIEM application layer. Creating this network
architecture is the main focus of this work.

While motivated by the P2P SIEM problem, the solution
we work towards is efficiently solving the 1-to-n messaging
scenario where "n" is a dynamically defined subset of the
network.

B. Contribution

We named the solution presented in this paper Class-
Chord. Class-Chord is a modified version of the Chord Dis-
tributed Hashtable (DHT) network architecture [2]. Chord
provides a robust P2P overlay which supports a simple
flooding protocol (1-to-all messaging) and direct point-to-
point messages (1-to-1 messaging). Class-Chord adds the
ability for Chord to efficiently send messages to classes of
nodes (1-to-n messaging). A class is a subset of nodes in the
network that meet a class specification. In this paper, we
present a detailed theoretical analysis of Class-Chord and
provide experimental results from over 15,000 tests running
on a Python implementation of the Class-Chord network



on over 300 nodes. The results show that Class-Chord is
more time efficient than sending point-to-point messages
or flooding messages to large subsets of nodes. We also
compare our approach to publish/subscribe models [3], [4],
[5], [6], and WAN-multicast message passing solutions [7],
[8].

To summarize, the contributions of the presented research
are:

e The Class-Chord algorithm which sends messages to
classes of nodes within a Chord network more ef-
ficiently than either flooding or point-to-point ap-
proaches.

o A theoretical evaluation of the Class-Chord algorithm
and an evaluation of our implementation

o« A Python implementation of Class-Chord publicly
available for use by future research teams for further
experimentation

C. Paper Organization

The rest of the paper is organized as follows. In Section II
we define the problem formally and the metrics to measure
the results. Section III describes the Class-Chord approach in
detail. In Section IV we present both theoretical results and
actual results from our implementation. Section V describes
related work regarding message passing systems as well as
other related modifications to Chord. Finally, Section VII
concludes the paper.

II. PROBLEM DEFINITION

To understand the Class-Chord system presented we first
present a short introduction to the traditional Chord dis-
tributed hashtable [2].

A. Traditional Chord Messaging [2]

Chord is an overlay network that arranges nodes into a
ring-based structure. Each node has a globally unique ID
(GUID). In this paper, we refer to the GUID simply as the
nodes’ ID. The nodes are arranged into a ring ordered by
ID. To create the ring each node maintains a pointer to its
successor node which is the next node existing in the ring
with an ID higher than the current node. The successor to
the node with the highest ID is the node with the lowest ID
which creates the "ring". This GUID is typically a hash of
some attribute such as the MAC address. The full address
space of the ring is typically much greater than the actual
number of nodes present in the ring creating a sparse ring.
For example, a typical node ID is a 32 bit number. During a
node ID lookup, if the requested ID is found the node will
be returned, or if not, the closest node succeeding the ID
will be returned.

A message could propagate around the ring simply by
having each node send the lookup to their successor. In
a SIEM system this is useful for sending flooding queries
where each node should receive the query. However, to send

a message to a specific node a more efficient node lookup is
needed. To make a single node lookup more efficient Chord
uses the concept of a "finger table". Each node maintains a
finger table which stores a mapping from node IDs to node
locations (i.e. IP addresses) which are responsible for the
ID. Chord’s finger table contains m entries where m is the
number of bits in the ID. The i*" entry in the table is the
node location responsible for ID (n + 2~ 1)mod 2™. Using
this approach, Chord node lookups are O(logN).

The traditional Chord architecture provides a simple and
efficient framework to send messages to all nodes or indi-
vidual nodes in the network. This is attractive for a SIEM
system which needs both capabilities. However, in a large
organization a SIEM system operator may need to send
query messages to subsets of the network. For example,
to only routers or to all servers running Linux. Traditional
Chord does not provide an efficient approach for these types
of messages.

B. Class-Based Messaging

To create a peer-to-peer SIEM requires a network messag-
ing architecture which supports messages directed to classes
of nodes based on the nodes’ attributes. We call these class-
based messages. The system must support dynamic class
specifications to let system operators target different classes
of nodes based on attributes. These specifications must
support attribute ranges, exact values, and lists of values.
For example, a query may want to target all machines with
the Windows operating systems or Linux patch level range
"4.12-6.03". In the next section we formalize how to measure
the efficiency of the messaging protocol we will use in the
following sections to compare Class-Chord to a traditional
Chord implementation.

Chord’s ring topology enables a simple flooding message
transmission in O (V) time or messages by having each node
forward the message to their successor. Each node caches
its successor location so the message doesn’t require any
further information. We denote a cached lookup as a "short
lookup" throughout this paper. Results reported in [2] show
that an arbitrary node lookup can be done in O(logN) time.
We refer to these non-cached lookups as "long lookups"
throughout this paper because they take significantly more
time than constant time short lookups. Thus, a single mes-
sage to another node is O(logN). However, Chord provides
no efficient approach to send a message to a group of nodes.

Our problem is: given a group of nodes in a class (C)
within a Chord network, how do we efficiently send them a
message? To measure the efficiency of our system we define
a metric called waste (W). Waste has two components — the
number of wasted messages plus the number of long node
location lookups required to get the message to all nodes
that match the message’s class specifier. Wasted messages
are messages received by a node where the message’s class
specifier do not match the node’s class. After the message



reaches the node, checking the specification is a constant
time operation O(1). The wasted messages will be discarded
by the node.

A long lookup is a node address lookup which is not
cached locally by the node. As previously mentioned, node
lookups in Chord are O(loga(N)). Waste (W) is computed
using Equation 1 below where 7 is a constant representing
the time to process a message by the node.

W = (Nr — No)1 + L xlog2(N)T (1)

Where Ny is the number of nodes which received the
message, N¢ is the number of nodes that match the class
specifier in the message and L is the total number of long
lookups required. As an example, we compute this metric for
a 1,000 node network with a node class specifier matching
100 nodes. Using a flooding query:

Npr = 1000
N¢c =100
2
I—0 @)

W = (1000 — 100)7 + 0 = 9007

Using the same network parameters, sending individual
query messages instead of a flooding message, results in the
following waste:

Ng =100
Ne =100
3
L =100

W = (100 — 100)7 4 100 * log2(1000)T = 9967

As shown, flooding requires many more wasted messages
and individual messages require many extra long lookups.
Later in this paper, we will show that Class-Chord reduces
both long lookups and wasted messages.

III. CLASS-CHORD ROUTING

Class-Chord adds meaning into Chord’s node IDs to
enable routing messages to groups of nodes that correspond
to the characteristics of a query, through a simple numer-
ical process. Thus, the Class-Chord node’s ID is a class
specification followed by unique bits. The class specification
itself is broken down into sub-parts for each attribute of the
node that is part of a class specifier. For example, a simple
class specification could hold operating system type, device
type, and patch level. Table I describes the example class
attributes.

In the specific example shown in Table I, a node’s class
specification will be 13 bits. Given a unique ID of 115 bits,
results in a node ID length of 128 bits. The specification of
a Windows laptop at patch level 12 is shown in Figure 1
below.

To efficiently send a message to a class of nodes, we
modify the Chord algorithm’s lookup function to accept a

Table 1
SAMPLE CLASS SPECIFICATION VALUES

Field Num Bits
OS Type 2

Values
1: Windows
2: Linux

3: Mac OS X
1: Desktop

2: Laptop

3: Switch
4
5
N

Device Type 3

: Printer
: IP Phone
umeric range 00-256

Patch Level 8

‘ Class Spec (13 bits) ‘ Unique ID (115 bits)

A
[ \

‘ OS Type | Device Type | Patch Level ‘

‘ 01 10 00110000 -> 0x630 I

Figure 1. Sample class ID for a Windows laptop at patch level 12. Unique
ID bits are a random 115 bit number not shown.

class specification or a node ID as its destination. If the
lookup function finds a class specification in the destina-
tion, it parses the destination and can determine the next
appropriate node ID to lookup. A class specifier is similar
to a class ID specification, however a major strength of our
approach is the class specifier allows wildcards and ranges.
In our implementation the class specifier can contain the
value-types shown in Table II.

Table 1T
CLASS DESTINATION SPECIFICATION VALUE TYPES

Type Description Example value
Exact A simple numeric value, cannot be changed. 03
Range A numeric range, where any value in the 04-06
range is accepted.
Multiple | A list of multiple exact value (comma sep- 3,6,8
arated).

Any value-type can be used in the class-specifier by
implementing the following two functions for the value-type:

boolean < ISVALID(speci fier, currentV alue)
long <+ GETNEXTVALUE(speci fier, currentValue)

Once parsed, the algorithm mathematically determines the
next hop that is valid in the class.

A. Computing the next hop

The key efficiency improvement in Class-Chord is the
ability to skip over nodes which are not in the specified
class when routing the message. This is done by parsing
the class specification and using it in conjunction with the
current node’s ID to determine the next feasible ID (i.e. the



next hop). The next feasible ID may not be assigned to a real
node because in a sparse network most available node IDs
are un-used. However, in Chord this is still efficient because
a node lookup results in the node present in the network
with that ID or the next higher ID present in the network.
Thus, the next feasible ID is simply the next ID greater than
the current ID that is a member of the class specification.

To compute the next hop we present the pseudocode snip-
pet in Algorithm 1. The full working code for Class-Chord
is being made available at https://github.com/danfleck/Class-
Chord.

The pseudocode in Algorithm 1 first checks if the next ID
(computed by adding 1 to the current node’s ID) matches the
class specifier in the message. This is the simplest and most
common case. When this happens, the node just forwards the
message to its successor. This is a constant time operation.
Once the message reaches a node whose successor does not
meet the class specification’s criteria, then the node must
lookup the next valid class, which is not simply the node’s
current ID plus one.

To compute the next node which should receive the
message the class specification is parsed into "atoms". Each
atom is a single item in the class specification with a valid
set of values. An example atom could be patch level (e.g.
"3-7"). In our implementation atoms can be ranges, exact
values, or multiple values. The code then looks at each atom
to find the first invalid atom. Once found, all the atoms to the
right of it are set to their minimum valid value. The invalid
atom is then incremented to its next valid value. If that value
is greater than the maximum valid value, we must "carry"
the increment to the next atom to the left and increment
it. Otherwise, if there is no carry required, all remaining
atoms to the left of the invalid atom remain their same value.
Examples showing the next hop are given in Table III.

Table IIT
NEXT HOP EXAMPLES (WITH 4 CLASS ATOMS AND A 4 DIGIT GUID)

Class Spec Sample Node ID Next Hop ID
11-12 122133 1 44 112233449999 122233440000
11-12 122133 1 44 112233445555 112233445556

11,30,99 122 133 | 44 112233449999 302233440000
11-12122133,99 | 44 112233449999 112299440000

While we have implemented several atom-types (e.g.
exact, range, and multiple values) many other atom-types
could be implemented as needed. Each atom simply needs
to support the following methods:

e boolean <+ isValid(atomSpec, current Atom) re-
turns True if currentAtom meets the specification, False
otherwise.

o long <+ getMinValue(atomSpec) returns the mini-
mum valid value for this atom

e long,boolean + getNextId(atomSpec, currentAtom)

returns the next ID and a boolean set to True if carrying

the one, False otherwise. Carrying the one happens
when the next valid ID would otherwise be greater
than the maximum allowed by the atom.

Finally, getNextHop must handle the remaining case when
there are no more valid class IDs. Because Chord is a ring
structure, the next ID is then the minimum class ID with the
minimum GUID. The code shown in Algorithm 1 does this
naturally through the "carry" mechanism.

While most nodes not satisfying the class specification
are skipped using this approach, there are times when
nodes outside the class get the message. These are wasted
messages. A wasted message happens when a message is
sent to a destination ID in the class, but a node with the
destination ID does not exist, and the next existing node in
the Chord ring does not match the message’s class specifier.
For example, consider the simplified Chord ring shown in
Figure 2. Node A is sending a class message to class 1
(CID=1). getNextHop will return an ID of 111 (class 1 and
GUID 11). Because no nodes in the network are actually
present with that ID, the message goes to the next higher
ID present in the network. The message gets sent to node B,
which is a wasted message because B is not part of class 1.
Node B then uses getNextHop which sends to node D, the
first successor node within class 1. From this example, we
can see that some messages are still wasted; however this
only happens at class boundaries on the ring. In practice,
there will be a much smaller number of wasted messages
than correctly sent messages as shown in the results section.

CID: 1
GUID: 10

CID: 2
GUID: 20

CID: 2
GUID: 30

Figure 2.  Sample network shown with simplified class IDs (CID) and
GUID split apart.

IV. RESULTS

In this section we present results that quantify the num-
ber of wasted messages based on network parameters. We
present both theoretical results and experimental results
computed using our Python implementation.

A. Theoretical Results

Recall the measurement we are interested in is the waste
(W) computed using Equation 1. To compute W we need



Algorithm 1 Pseudocode for getNextHop

1: function GETNEXTHOP(currentNodelD, classSpec)
2: if 1SVALID(currentNodeID+1,classSpec) then
return currentNodelD + 1
end if

currentClassID, currentGUID < SPLIT(currentNodel D)

newClassID <+ *’

3

4

S:

6: newGUID + 0
7

8 atoms < GETCLASSATOMSFROMSPEC(classSpec)
9

# We need to update the current
# ClassID so we set the GUID
# portion to zeros.

firstInvalid < FINDFIRSTINVALIDATOMFROMLEFT()

10: if firstinvalid is None then

11 firstInvalid < last AtomIndex # Still need to increment something
12: end if

13: for atom in atoms do # Now the atoms to the left of

14: if atom.index == firstInvalid then # firstlnvalid should be okay, the
15: newAtomVal, carry < INCREMENTID (atom, currentClassID) # ones to the right need to be set
16: newClassl D < newAtomVal + newClassI D # to min values and the invalid one
17: else if atom.index > firstInvalid then # incremented.

18: newClassID < MINVALUE(atom) + newClassI D

19: else

20: while carry do

21: newAtomVal, carry < INCREMENTID (atom, currentClassID)

22: newClassl D < newAtomVal + newClassl D

23: end while

24: end if

25: end for

26: return newClassID + newGUID

27: end function

to compute the number of nodes which actually receive the
message (/Ng), the number of nodes in the class (N¢), and
the number of long lookups (L).

A long lookup occurs in Class-Chord when a node re-
ceives the message and the getNextHop function does not
simply increment by one. (The simple increment by one
case uses the nodes’ current successor which doesn’t require
a lookup.) The long lookup only occurs when a node must
send to a node outside their current class, or in the one case
where the node’s ID is the maximum ID (i.e. all nines in
base 10). The number of nodes with the maximum ID is at
most one, and thus negligible for these computations. Thus, a
node does a long lookup when it receives a message destined
for a class other than its own. This means that the lookups
only occur when a message is "wasted". Thus L = Ngp—N¢
transforming the waste equation into Equation 4 below for
Class-Chord.

Wee = (Nr — No)(1 +logz(N))T “4)

To compute the number of nodes that receive the message
(Ng), we must compute the number of messages which
go to nodes outside the class specification. This number
depends on the specific class specification and where the

atom is in the class specification. For example, if the class
specification is "OS | TYPE" then all the nodes with the
same OS are grouped together. Therefore, a message to class
"WINDOWS | ANY " would proceed from the beginning
of the block of Windows machines and end after the last
machine, thereby wasting only one message. However, using
the same network but sending a message to class "ANY
| LAPTOP" would generate a wasted message after every
different operating system value. The message from the
numerically highest Windows | Laptop would proceed to the
Windows | Desktop network segment. From there, the node
would recognize it’s not of the correct class (i.e. not a lap-
top), perform a long lookup, and send the message directly
to the first Linux | Laptop. In this way, the number of wasted
messages is equal to the number of non-consecutive different
classes which meet the message’s class specification.

To simplify the calculation, we denote a class atom as A
and the number of valid values within the class as V. Thus,
V7 is the number of valid values in the I*" class atom A;
for a given class specification. For example, in Figure 3 the
OS class atom is at I = 0 and the device type is [ = 1.
The number of non-consecutive different classes meeting the
class specification is thus given by Equation 5. Where S is
defined as the atom with the highest index (outermost ring)



I Desktop

Figure 3.  Sample class layout for a network with class specification
"OS | Device Type | User classification".

that is restricted by the class specification. Every atom above
S is not restricted and can be treated as a block. For example,
in Figure 3 the class specification "WINDOWS | LAPTOP
| ANY" has only one wasted lookup and similarly the class
specification "WINDOWS | ANY | ANY" also has one
wasted lookup, although many more members of the class.
Equation 5 computes the number of non-consecutive classes
that meet the class specification. Substituting Equation 5 into
Equation 4 yields our final waste equation 6 for Class-Chord.
The V7 term in Equation 6 varies with the class specification
and layout of the atoms in the Chord ring. This is the desired
property: to ensure the number of wasted messages varies
based on the class and atom layout. Flooding messages’
waste doesn’t vary with the class specification and point-
to-point’s waste doesn’t vary with the organization of the
nodes in the ring. Results shown in the next section validate
this analysis experimentally.

S
N=]v (5)
=0
S
Wee = (1+1logaN)r [[ Vi (6)
=0

B. Measured Results

1) Test Setup: To test the actual number of messages
and long lookups we implemented the system described in
Python. We then deployed 314 nodes spread across four
servers. Each node runs as an independent process and
reports measurements back to a central monitoring node. We
configured this network with the three class atoms shown
in Figure 3 (i.e. OS | Device Type | User classification).
Class attributes were distributed evenly among all the nodes
yielding over 100 of each machine type, device type, and
user classification.

During the test a random class specification was created.
Then, three separate tests were run. The first test sent
the message using the Class-Chord messaging algorithm
presented, the second test used Chord’s flooding message
protocol. The third test, labeled “PtP”, sent individual mes-
sages from the source node to each target node matching
the class specifier. Using these tests, we can compare the
ability of traditional Chord to Class-Chord for a variety of
class specifications which each result in different numbers
of matching target nodes. For some class specifications
hundreds of nodes meet the criteria, while for others very
few nodes meet the criteria. Using this approach over 15,000
tests were run.

2) Results: The X-axis of Figure 4 is the number of nodes
within the network that match the chosen class specifier.
The Y-axis shows the number of messages received by the
nodes that matched the class specifier. The figure shows that
all nodes receive the message as expected. In some cases,
the class message is received twice by a single node. This
happens when the message travels around the ring and is
finally stopped at the node which originated the message.

Figure 5 shows the number of messages a node received
that did not match its class specification. These wasted
messages unnecessarily use bandwidth and CPU of the
nodes that received them. As expected the figure shows
the flooding approach wastes many messages. Point-to-
point wastes no messages because an individual message
is sent directly to each node as needed. Class-Chord has
slightly more wasted messages when compared to point-to-
point for different class specifiers. However, Class-Chord
has significantly fewer wasted messages compared to the
flooding approach.

Figure 6 shows the number of long lookups that were
completed to send the message through the network. Recall,
a long lookup is one that requires the node to ask additional
nodes for assistance when routing the message. This is
part of the Chord protocol when a node does not know
the address associated with the given destination ID. These
lookups are costly, and one of our goals is to minimize
them. As shown in Figure 6, the point-to-point protocol
is wasteful because it must do a long lookup for almost
every destination node. Flooding does very few long lookups
because the message is blindly forwarded to the successor
of the current node. This is what makes flooding efficient in
lookups, but also increases the number of wasted messages
seen previously. Class-Chord succeeds in having very few
long lookups across the range of class specifiers as shown
in Figure 6.

In Figures 7 and 8 we compare the amount of time it
takes for a message to reach all destination nodes which
match the message’s class specifier. As shown in Figure
7 the point-to-point approach can take up to 27 seconds
depending on the number of matching destination nodes.
This is very inefficient when sending a message to large
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Figure 4. Good messages are ones where the message’s class specifier matches the node’s class. This chart provides a simple sanity check that as the

number of matching nodes increases in the X dimension, the number of messages received correctly increases for each method. 95% confidence interval
bars shown in red for class chord. Flooding and point-to-point have no variance in good messages.
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Figure 5. Wasted messages do not match the node’s class. This chart shows that flooding messages which get sent to all nodes frequently waste messages

while the point-to-point method only sends directly to matching nodes with zero waste thus no PtP bars are visible. Class-Chord has very few wasted
messages, only slightly above zero. 95% confidence interval bars shown in red for data which had variance.
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Figure 6. Number of long lookups for each method for varying numbers of matching nodes within the network. Flooding messages have zero long
lookups and thus aren’t visible in the chart. The point-to-point method requires many long lookups. Class-Chord has slightly more than zero long lookups.
95% confidence interval bars in red show minimal variance among the methods.



numbers of nodes when compared to flooding or Class-
Chord. Due to differences in overall scale, Figure 8 com-
pares the Class-Chord method to traditional flooding and
Figure 7 shows times solely for the point-to-point method.
As expected, there is little variation in the time for flooding
messages to reach all nodes. The time is not dependent on
the number of matching destination nodes. However, the
Class-Chord message’s timing profile shows that messages
that have fewer matching nodes within the class are more
efficient than messages which must travel to more matching
destination nodes. This is a desirable property enabling very
large networks to send messages to subsets efficiently. In
our testing, flooding is more efficient only when the class
specifier matches all nodes in the network (314 nodes in our
example). For this message, the flooding message is more
efficient because it does no checking or validation. In all
other cases, Class-Chord is more efficient as shown in the
results.

Overall, our test results are consistent with the theoretical
models and show that Class-Chord is more efficient than
either point-to-point or flooding when sending to sub-groups
of nodes within a Chord ring. The efficiency is gained
because Class-Chord has many fewer wasted messages than
the flooding approach and many fewer long lookups than
the point-to-point method.

V. RELATED WORK
A. Message Passing Systems

Message passing systems are used in a variety of contexts.
Chord [2], CAN [9], Pastry [10] and Tapestry [11] are
all Distributed Hashtable (DHT) implementations used to
create a networked hashtable. In our work we use the Chord
structure solely for message passing. In 2002 Kademlia [12]
was proposed as another DHT solution which was then
modified for use in BitTorrent [13] for file sharing. BitTor-
rent’s protocol was then adapted for secure message delivery
as BitMessage [14]. Google’s Thialfi [15] is a massively
scalable message passing service used to keep cached client
objects synchronized with changes on a server. PIER [16]
is one of many distributed database systems built on peer
to peer (P2P) network ideas. While all of these systems
are used for different purposes, they all pass messages to
nodes and share similar challenges of scalability, network
efficiency, storage efficiency and security. Class-Chord helps
address network and storage efficiency in derivatives of the
Chord protocol.

Some early DHTs are Chord [2], CAN [9], Pastry [10]
and Tapestry [11]. Each of these enables direct point-to-
point messages and they can perform flooding. However,
none of them natively support sending a message to classes
of nodes. The Class-Chord method relies on having a simple
one dimensional ID space. Using an automated approach
similar to [17] the Class-Chord approach could be applied to
Pastry. Additionally, future research could manually modify

the approach and apply it to the multi-dimensional coor-
dinate spaces of the other common DHTs. Kademlia and
its derivatives, BitTorrent and BitMessage, have efficient
flooding protocols, but do not natively support messages to
sub-groups.

Another common message passing paradigm is publish
subscribe (or pub/sub). An overview of various pub/sub
approaches is given in [18]. In these models a node indicates
interest in a topic or subject. A publisher then uses this
information to send messages to interested nodes. Early
approaches used group-based communication where a sub-
scriber would indicate their interest in a group and publishers
would store that information. Events would then be pub-
lished to particular groups. Examples include [3], [4], [5],
and [6]. These methods are inflexible and require publishers
to maintain information about all subscribers. Class-Chord
requires no information to be maintained explicitly for the
sub-groups and supports dynamic "groups" created by the
message’s class specification.

Flexible content-based approaches have been proposed
more recently in [19], [20], and [21]. In these systems the
subscriber provides a matching predicate for events they
are interested in. The message dispatcher then uses these
predicates to match events being dispatched to subscribers.
Similar to Class-Chord this enables sending messages to the
flexible groups based on the message content. This does not
require pre-formed groups, but does require the publisher
or another entity to maintain the predicate information for
the nodes which is not required in Class-Chord which
uses the node ID structure to obviate that requirement.
Additionally, efficiently matching predicates to nodes is a
research problem discussed in [22].

Thialfi [15] is a recent caching solution from Google
which models the problem as one of keeping versioned
objects current throughout the network. The basis of Thialfi
is a publish/subscribe type architecture with a heavy empha-
sis on fault-tolerance and scalability. The system sends the
latest object version numbers to subscribers, but relies on
the subscribers to then update their objects when possible.

In addition to publish/subscribe models built upon P2P
overlay networks, we can compare Class-Chord to multicast
solutions. Traditional multicast is efficient but requires nodes
to be on the same subnet and explicitly join multicast groups.
Some researchers have also built upon and augmented IP
multicast that solves these problems. One example is [7] in
which the authors modify IP multicast to support a channel
with exactly one publisher and many subscribers. This
approach enables scalability improvements over traditional
IP multicast. A different modification of IP multicast is
exemplified in [8]. The authors add two protocols on top
of IP multicast to enable inter-domain multicast routing to
create a scalable multicast solution.

A different approach was taken in [23]. The authors
develop a new P2P overlay architecture for message passing.
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interval shown in red.

The nodes are organized to place nodes with similar sub-
scription interests near each other in the overlay network.
The nodes then forward messages to all neighbors when
an incoming message matches their subscription preference.
This is done by creating a Containment Hierarchy Tree
which is used to limit how far the message needs to spread
to ensure it reaches all interested subscribers.

B. Modifications to Chord

Other authors have also modified Chord in a variety of
ways to support message passing. Most similar to our ap-
proach is [24]. The authors create a publish/subscribe system
using Chord. The approach uses nodes to store subscriptions
which are then matched to events. Once matched, the event is
sent to each matching node. It is unclear in the paper how the
matching messages are sent to the nodes, but using typical
Chord protocols either flooding or point-to-point messages
would be used resulting in a less efficient implementation
than Class-Chord.

In [24] the authors modify Chord to support scalable
publish/subscribe messages. To route the message they add

Average time for the message to reach all nodes matching the class specifier for the flooding and class messaging methods. 95% confidence

all keys which match the subscription into the message
that enables nodes to effectively route the message without
overly burdening a single node. Class-Chord reduces the
burden similarly, but does so by modifying the node ID to
include the class attributes, and thus does not require the
matching IDs to be included within the message.

In [25] the authors enable multi-attribute range queries by
mapping attributes into one dimension using space filling
curves. They use range queries to find content stored in
the DHT. Their approach could be modified to set node
IDs using the one dimensional values and create a new
messaging type to support a class messaging scheme. They
currently separate nodes by ID into sub-rings which would
support static classes, but not dynamically created classes.

Another common approach using Chord is to modify the
node IDs to be near to each other in some dimension. One
example is Geo-Chord [26] which arranges nodes along the
ring to minimize physical distance. This approach allows the
ring to quickly send messages overall and along the single
dimension could be used to create classes. For example, a



class of "all United States" would be quickly addressable.
In all approaches similar to this, only a single static class is
supported. Class-Chord supports multiple dynamic classes
which can be based off of any number of attributes.

VI. FUTURE WORK

Class-Chord’s efficiency requires changing the node IDs
to incorporate information about the node’s class. While
this increases efficiency when sending messages, it adds
costs when changing the information. For example, if a
node’s class specifier encodes its patch version, every patch
update will cause the node to generate a new ID and re-
join the overlay network. This is likely an infrequent event,
and one already handled well using Chord’s join and leave
mechanisms as described in [2]. A larger challenge is when
new class attributes are added globally to the network.
For example, if the network administrators decided to start
designating nodes by the amount of hard drive storage
they possess. In these cases all nodes will need new IDs
to incorporate the new information. In future research, we
will investigate ways to re-generate IDs efficiently. For our
SIEM example, the attributes change over days or weeks
and don’t pose a problem. However other problem domains
may require more frequent global attribute modifications.

VII. CONCLUSION

In this paper we presented Class-Chord. A modified ver-
sion of the Chord algorithm used to send messages to classes
of nodes within the network. Class messages are routed
through the network using a class specifier which enables
any class attribute combination. Class specifier attributes
can include exact values, ranges, and lists of valid values.
We analyzed both the theoretical performance and provided
results from a thorough test using our implementation.
The results show that Class-Chord outperforms using the
native Chord network’s flooding or point-to-point messaging
protocols.
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